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Structure determination in reciprocal space through powder 
diffraction is a sequential process with clearly defined stages:

Starting information: chemical formula and experimental profile

 Indexation

 Space group determination

 Structure Rietveld refinement 

 Profile decomposition and 
intensity extraction

 Structure solution

xyz = 1/V hkl Fhkl exp{-2i(hx + ky + lz)}
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xyz = 1/V hkl Fhkl exp{-2i(hx + ky + lz)}

Need to solve the equation above for all x, y, z in the unit cell

Fhkl = |Fhkl|exp(ihkl)

What do we know?

|Fhkl|

What we still need?
hkl

collected in the X-ray experiment. The measured intensities 
are proportional to the amplitudes of the coefficients used 
in the electron density equation (Ihkl  Fhkl

2) 

Not collected in the X-ray experiment. Hidden among the 

measured  |Fhkl|             The phase problem 3



Karle
amplitudes
with Hauptman
phases

Karle 
amplitudes
with Karle
phases

Hauptman
amplitudes
with Hauptman
phases

Hauptman
amplitudes
with Karle
phases

Phases dominate the image!
This is also why incorrect phases can cause big problems

Unfortunately the phases contain the bulk of the structural
information
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Main steps of the Reciprocal Space approach for 
solving powder crystal structures

Starting information: chemical formula
experimental profile

 Indexation 

 Space group determination

Structure solution by ab initio methods:

 Direct Methods

 Patterson method

 Maximum Entropy

 Charge Flipping

 Structure Rietveld refinement 

 Profile decomposition and intensity extraction

Solving the 
phase problem
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Direct Methods 

First step

the experimental pattern is
decomposed into single integrated
intensities and a list of
structure factor moduli |Fhkl|
associated to each hkl reflection, is
obtained

Ihkl |Fhkl|
2

by using Le Bail or 
Pawley method

Second step

are applied to calculate the phases h

of structure factors 

Fhkl=|Fhkl|exp(ihkl)

Ihkl |Fhkl|
2

Direct Methods

By using the experimental moduli

=T-1[Fhkl]

Statistical approach to the phase problem, work in the reciprocal 
space with a two step method 
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Second Step:

Ih |Fh| h

solution of the phase problem

determination of the reflection phases directly from structure factor 
magnitudes 

by using the following assumption on (r):

2) Atomicity: 
the electrons are
concentrated around
the nuclei and not
dispersed in the unit cell

1) Positivity: in the unit cell the electron 
density can never be less than 0

( r )  0   f > 0

3) Uniform distribution of the atoms in the unit cell 7



Some considerations

This information, apparently trivial, is very useful to succeed in all the 
steps of a modern Direct Methods procedure:

1) Scaling of the observed intensities and normalization of the 
structure factors

2) Estimate of the structure invariants

3) Application of the tangent formula

4) Crystal structure complation and refinement
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Some considerations

resolution dependent (fj varies with θ )

)/sinexp( 220 jjj Bff temperature dependent: 

experimental pattern Ih = k|Fh|2

 2 2

1
| |

N

jj
F f 


  h

positivity and atomicity of 

the electron density map

reflections measured at 
different  values can 

not be compared directly

the experimental structure 
factors are measured on a 
relative scale

The k = scale factor and B = average isotropic thermal parameter

is determined by using the Wilson method 9



EXPO: 
DIRECT METHODS IN ACTION

%......

%normalization (scaling of the observed intensities and normalization

of the experimental structure factor moduli)

%invariants

%phase

%fourier

%continue
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THE WILSON PLOT

Determination of the unknown constants K and B using the extracted 

intensities

. 

represents a straight line:

slope: 2B

intercept: ln[k]
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Normalized structure factors

They represent an ideal point atom structure because no 

 dependent factors are present
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Direct Methods turn out to be more effective if the 
observed structure factors are modified to take out the 

effects of the electron density distribution in an atom and 
its thermal motion
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Some considerations

This information, apparently trivial, is very useful to succeed in all the 
steps of a modern Direct Methods procedure:

1) Scaling of the observed intensities and normalization of the 
structure factors

2) Estimate of the structure invariants

3) Application of the tangent formula

4) Crystal structure complation and refinement
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%......

%normalization

%invariants (determination of the structure invariants)

%phase

%four

%continue

EXPO:

DIRECT METHODS IN ACTION
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STRUCTURAL INFORMATION

|Fh|2 = fj
2 + fi fj exp[2ih(ri-rj)]

Observed amplitudes Interatomic vectors

Structure factor phases 

Dependent on the choice of origin

Image of the structure

Independent on the origin chosen by the user
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STRUCTURAL INFORMATION
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h’ =  h- 2hr0

   

     

 

 

'

0

1 1

' '

0 0

1

'

0

'

0

exp 2 exp 2 ( )

exp 2 exp 2 exp 2

exp 2

exp 2 | | exp ( ')

N N

j j j j

j j

N

j j

j

h

h h

F f i f i

i f i i F

F i F

F i F i

 

  



  

 



  

 

 

 

 



h

h

h

h h

hr h r r

hr hr hr

hr

hr

not structure invariants

structure invariants

16



The phase values depend on the origin chosen by the user: 
not structure invariants

The moduli  are independent on the origin chosen by the 
user: structure invariants

Can we derive the phases from the diffraction moduli ?

Evidently, from the observed moduli is possible to derive 
information only on single phases or linear combinations of 

phases which are independent on the choice of origin,
which are  structure invariants
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STRUCTURE INVARIANTS ARE

Products of structure factors satisfying the condition
that the sum of the indices is zero

The simplest invariant: triplet invariant FhFkF-h-k

Owing to the shift of origin r0, the single phase h changes according to:
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The sum (h +  k+ -h-k ) is called triplet phase invariant

 h’ =  h- 2hr0

But the product calculated respect to the new origin, does not change
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doublet invariant : Fh F-h = |Fh|2

triplet invariant : Fh Fk F-h-k

quartet invariant : Fh Fk Fl F-h-k-l

quintet invariant : Fh Fk Fl Fm F-h-k-l-m

……………….

STRUCTURE INVARIANTS: EXAMPLES
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Some considerations

This information, apparently trivial, is very useful to succeed in all the 
steps of a modern Direct Methods procedure:

1) Scaling of the observed intensities and normalization of the 
structure factors

2) Estimate of the structure invariants

3) Application of the tangent formula

4) Crystal structure complation and refinement
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%......

%normalization

%invariants

%phase (phases estimation)

%fourier

%continue

EXPO:

DIRECT METHODS IN ACTION
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DIRECT METHODS PROCEDURE

To apply the phasing procedure we need to know at least one

pair (k + h-k); much better if we know more pairs (k + h-k)

Ih  |Fh|  |Eh| 

Selection of the reflections with |Eh| > 1.0 (Nlarge)

Setting up triplet relationships among Nlarge reflections

Application of the Tangent formula to calculate and refine the 
phases
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List of sorted solutions and 
selection of the most reliable one

{|E|, }
Electron density map calculation

Rietveld refinement process

FOM calculation Allows an a priori estimate of 
the goodness of each phase set

DIRECT METHODS IN PRACTICE
The phase determination process usually leads to more than one

trial solution. Obviously most are not correct

(r)=T-1Eh

Automatic interpretation23



%......

%normalization

%invariants

%phase

%fourier (E-map calculation)

%continue

EXPO:

DIRECT METHODS IN ACTION
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E-map: generally the obtained structure model is incomplete and 
distorted, and represents only a rough approximation of the real 

structure

The final model can be uninterpretable

before the final Rietveld refinement

necessary to complete 
and refine the structure

MODEL OPTIMIZATION

AT THE END OF DIRECT METHODS……
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No solution on set n. 1

3 Solutions on sets n. 17, 19 and 20

At the end of Direct Methods procedure, the most plausible 

sets of phases are ranked according to CFOM 

CFOM exploits the integrated intensities values

it can be meaningless and the correct set of Direct

Methods phases could not be the first one in the list

26



ALLTRIALS PROCEDURE

When no solution is found by using the default choice of EXPO

(set of phases n. 1)

The exploration of all the 20 stored trials can automatically executed by 

EXPO through the non-default ALLTRIALS procedure. It automatically 

carries out, for each of the stored trials, the structure solution process
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Main steps of the Reciprocal Space approach for 
solving powder crystal structures

Starting information: chemical formula
experimental profile

 Indexation 

 Space group determination

Structure solution by ab initio methods:

 Direct Methods

 Patterson method

 Maximum Entropy

 Charge Flipping

 Structure Rietveld refinement 

 Profile decomposition and intensity extraction

Solving the 
phase problem
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There are three very important points about the Patterson method:

PATTERSON METHOD

 The Patterson map can be calculated from the diffraction data 
without knowing the phases

 Requires the presence of a heavy atom in the structure, e.g. Fe, Cl, S, 
etc

 The Patterson is a vector map of the structure

P(u)=T-1 F(r)2

We can get the relative (not absolute) positions of atoms with respect 
to each other 29



THE VECTOR MAP OF TWO ATOMS

Vector  atom 1 to atom 2

Vector  atom 2 to atom 1

Vector  atom 1 to atom 1

Vector  atom 2 to atom 2

There are four vectors, two equal 
and opposite interatomic vectors 
and two self vectors

Vector map

What is the complete set of vectors between two atoms?

1 2

The vector map has a large peak 
at the origin and two lower peaks 
on either side of it, separated 
from the origin by the distance 
between the two atoms
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We can generate a vector map of
a molecule by putting each atom
in succession at the origin

molecule

Patterson map

THE VECTOR MAP OF SOME ATOMS
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The Patterson map of N atoms contains N2 peaks: 

 N peaks at the origin, representing the vector 

between each atom and itself

 N(N-1) peaks within the unit cell

PATTERSON MAP

The map can be very congested and difficult to interpret. In addition,
the Patterson map is centrosymmetric, which further complicates
cells for non-centrosymmetric lattices.

The intensity of each peak is proportional to the product of the atomic
numbers of the two atoms to which the vector refers

Patterson function particularly effective for the identification of the
position of heavy atoms when most of the other atoms are light 32



PATTERSON METHOD

Patterson methods are often the first choice for the solution of 
structures containing a few heavy atoms  

If they have a sufficiently high atomic number, they can be used as a 
good initial model to which one can apply the so-called Method of 

Fourier Recycling, to obtain the light atom positions and then to 
recover the complete structure 
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%......

%normalization

%patterson

inverse

%continue

EXPO:

PATTERSON METHOD IN ACTION

To activate the procedure of calculating the 
|F| values from an inverted suitably 

modified Patterson map 

The values are then used as starting point 
in the Le Bail algorithm for extracting new 

structure factor moduli from the 
experimental pattern
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Main steps of the Reciprocal Space approach for 
solving powder crystal structures

Starting information: chemical formula
experimental profile

 Indexation 

 Space group determination

Structure solution by ab initio methods:

 Direct Methods

 Patterson method

 Maximum Entropy

 Charge Flipping

 Structure Rietveld refinement 

 Profile decomposition and intensity extraction

Solving the 
phase problem
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Proposed for single crystal data, has been also adapted to
powder diffraction data

It is an ab initio dual-space iterative method switching back
and forth between real and reciprocal spaces for the
determination of an approximate electron density

Needs only lattice parameters and the set of the 
experimental structure factors moduli; neither chemical 
composition nor symmetry information is required. The 

structure is solved in P1

CHARGE FLIPPING: THE PRINCIPLE
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structure factors

electron density (r)

“flipped” electron density
g(r)= - (r) if (r)<

g(r)= (r) otherwise

“flipped” structure factors 
|G(h)| and h

random phases
+

experimental 
amplitudes 

expanded to P 1

inverse FT

flip all charge below a 
(small) threshold δ

FT

Combine phases 
of the flipped SF 
with amplitudes 
of the exper. SF 

CHARGE FLIPPING: THE PRINCIPLE

Flow chart

Converged?

No

YesSTOP 37



Charge flipping reconstructs the density always in P1
where the maxima can appear anywhere in the cell

In higher symmetry the choice is limited with a lower 
effectivity

Advantages:
 No need to know the symmetry, which can be read out from
the result
 It is extremely simple and easy to implement

Disadvantages:
 The structure is randomly shifted in the cell: it is necessary to
locate the origin of the space group
 suffers from the inaccuracy of the extracted reflection
intensities

CHARGE FLIPPING
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CHARGE FLIPPING METHOD

It requires atomic resolution to work: better than 1.2 Å for 
organic compounds, 1.6 Å for heavy atom structure

The problem has been faced by introducing in the 
algorithm some modifications like the histogram matching 

loop
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CONCLUSION

Crystal structure solution by powder diffraction data is
not easy.

Great experimental, methodological and computing
progress has been reached.

In spite of that, powder solution is still a challenge in
many cases.

The effort is to make solution by powder 
comparable with the single crystal case: 

sophisticated software in which, constantly evolving 
theories are implemented,  are on the market
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