

EXPO&more International Workshop

Organized by the Institute of Crystallography - CNR 30 September - 3 October 2019 Bari - Italy

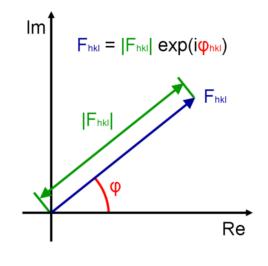
RECIPROCAL SPACE METHODS SOLUTION

Rosanna Rizzi

Institute of Crystallography (CNR-Bari)

rosanna.rizzi@ic.cnr.it

Structure determination in reciprocal space through powder diffraction is a sequential process with clearly defined stages:

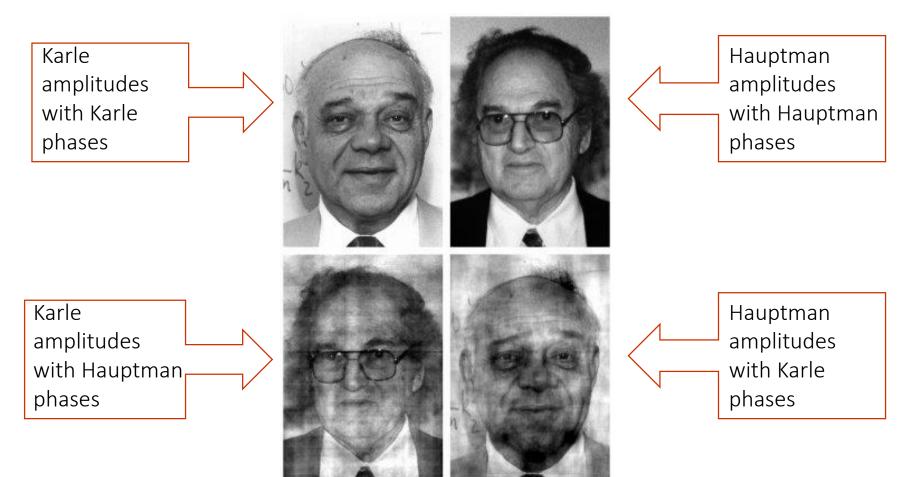

Starting information: chemical formula and experimental profile

 Indexation • Space group determination Fou • Profile decomposition and intensity extraction 25000 20000 Structure solution 15000 10000 5000 $\rho_{xyz} = 1/V \sum_{hkl} F_{hkl} \exp\{-2\pi i(hx + ky + lz)\}$ Structure Rietveld refinement

$$\rho_{xyz} = 1/V \sum_{hkl} F_{hkl} \exp\{-2\pi i(hx + ky + lz)\}$$

Need to solve the equation above for all x, y, z in the unit cell

 $\mathsf{F}_{\mathsf{hkl}} = |\mathsf{F}_{\mathsf{hkl}}| \exp(\mathsf{i} \varphi_{\mathsf{hkl}})$



What do we know?

 $|F_{hkl}| \rightarrow$ collected in the X-ray experiment. The measured intensities are proportional to the amplitudes of the coefficients used in the electron density equation $(|I_{hkl} \propto |F_{hkl}|^2)$

What we still need?

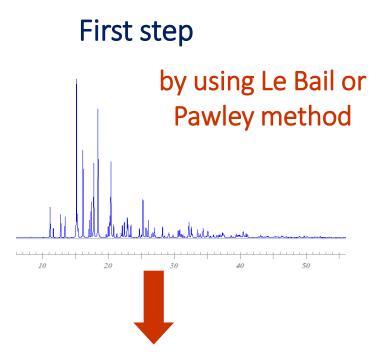
Unfortunately the phases contain the bulk of the structural information

Phases dominate the image! This is also why incorrect phases can cause big problems

Main steps of the Reciprocal Space approach for solving powder crystal structures Starting information: chemical formula experimental profile

- Indexation
- Space group determination
- Profile decomposition and intensity extraction

- Direct Methods
- Patterson method
- Maximum Entropy
- Charge Flipping


Solving the phase problem

5

• Structure Rietveld refinement

Direct Methods

Statistical approach to the phase problem, work in the reciprocal space with a two step method

the experimental pattern is decomposed into single integrated intensities $I_{hkl} \propto |F_{hkl}|^2$ and a list of structure factor moduli $|F_{hkl}|$ associated to each hkl reflection, is obtained

Second step

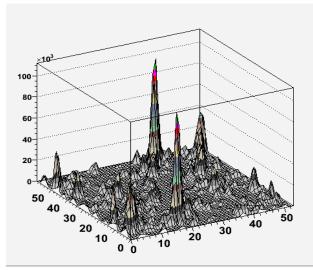
By using the experimental moduli

 $|F_{hkl} \propto |F_{hkl}|^2$

Direct Methods

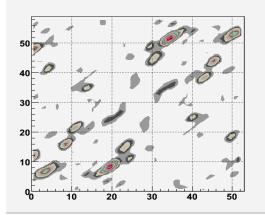
are applied to calculate the phases $\varphi_{\rm h}$ of structure factors

 $F_{hkl} = |F_{hkl}| \exp(i\varphi_{hkl})$


Second Step:

solution of the phase problem

determination of the reflection phases directly from structure factor magnitudes


by using the following assumption on $\rho(r)$:

1) **Positivity:** in the unit cell the electron density can never be less than 0

 $\rho(\mathbf{r}) \ge 0 \implies \mathbf{f} > 0$

2) Atomicity: _____ the electrons are concentrated around the nuclei and not dispersed in the unit cell

3) Uniform distribution of the atoms in the unit cell 7

Some considerations

This information, apparently trivial, is very useful to succeed in all the steps of a modern Direct Methods procedure:

- 1) Scaling of the observed intensities and normalization of the structure factors
- 2) Estimate of the structure invariants
- 3) Application of the tangent formula
- 4) Crystal structure complation and refinement

Some considerations

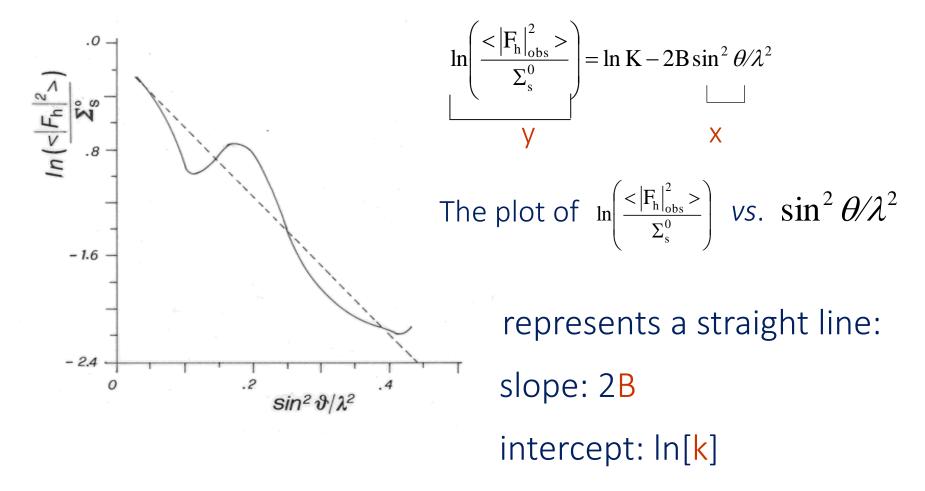
experimental pattern
$$\longrightarrow$$
 $|_{h} = (k F_{h})|^{2}$ the experimental structure
factors are measured on a
relative scale
positivity and atomicity of
the electron density map
resolution dependent (f_{j} varies with ϑ) \longrightarrow reflections measured at
different θ values can
not be compared directly

temperature dependent:

$$f_j = f_j^0 \exp(-B_j \sin^2 \theta / \lambda^2)$$

The k = scale factor and B = average isotropic thermal parameter is determined by using the Wilson method

EXPO: DIRECT METHODS IN ACTION


%.....

%normalization (scaling of the observed intensities and normalization of the experimental structure factor moduli)
%invariants
%phase
%fourier

% continue

THE WILSON PLOT

Determination of the unknown constants K and B using the extracted intensities

Direct Methods turn out to be more effective if the observed structure factors are modified to take out the effects of the electron density distribution in an atom and its thermal motion

Normalized structure factors

$$E_{\mathbf{h}} = F_{\mathbf{h}} / (\sum_{j=1}^{N} f_j^2)^{1/2}$$

$$|E_{h}| = \left\{ \frac{|F_{h}|^{2}_{obs}}{\operatorname{K} \exp\{-2Bs^{2}\}\varepsilon\sum_{j=1}^{N} {}^{o}f_{j}^{2}} \right\}^{1/2}$$

They represent an ideal point atom structure because no θ dependent factors are present

Some considerations

This information, apparently trivial, is very useful to succeed in all the steps of a modern Direct Methods procedure:

- 1) Scaling of the observed intensities and normalization of the structure factors
- 2) Estimate of the structure invariants
- 3) Application of the tangent formula
- 4) Crystal structure complation and refinement

EXPO: DIRECT METHODS IN ACTION

%.....

%normalization

%invariants (determination of the structure invariants) %phase %four

%continue

STRUCTURAL INFORMATION

$$|F_h|^2 = \Sigma f_j^2 + \Sigma f_i f_j \exp[2\pi ih(r_i - r_j)]$$

Observed amplitudes

Interatomic vectors

Independent on the origin chosen by the user

Dependent on the choice of origin

STRUCTURAL INFORMATION

 $\mathbf{r}_{j} = \mathbf{r}_{0} + \mathbf{r}_{j}'$

$$F_{h} = \sum_{j=1}^{N} f_{j} \exp\left(2\pi i h r_{j}\right) = \sum_{j=1}^{N} f_{j} \exp\left(2\pi i h (r_{0} + r_{j})\right)$$
$$= \exp\left(2\pi i h r_{0}\right) \sum_{j=1}^{N} f_{j} \exp\left(2\pi i h r_{j}\right) = \exp\left(2\pi i h r_{0}\right) F_{h}$$
$$F_{h} \exp\left(-2\pi i h r_{0}\right) = F_{h}$$
$$|F_{h}| \exp\left(-2\pi i h r_{0}\right) = |F_{h}'| \exp\left(\phi_{h} - 2\pi h r_{0}\right) = |F_{h}'| \exp\left(\phi_{h}'\right)$$

 $\begin{cases} |F_h'| = |F_h| & \longrightarrow & \text{structure invariants} \\ \phi_h' = \phi_h - 2\pi hr_0 & \longrightarrow & \text{not structure invariants} \end{cases}$

The phase values depend on the origin chosen by the user: not structure invariants

The moduli are independent on the origin chosen by the user: structure invariants

Can we derive the phases from the diffraction moduli ?

Evidently, from the observed moduli is possible to derive information only on single phases or linear combinations of phases which are independent on the choice of origin, which are structure invariants

STRUCTURE INVARIANTS ARE

Products of structure factors satisfying the condition that the sum of the indices is zero

The simplest invariant: triplet invariant $F_h F_k F_{-h-k}$

Owing to the shift of origin r_0 , the single phase ϕ_h changes according to:

$$\phi_{h}' = \phi_{h} - 2\pi hr_0$$

But the product calculated respect to the new origin, does not change

$$F_{h}'F_{k}'F_{-h-k}' = |F_{h}|\exp i(\phi_{h} - 2\pi hr_{0})|F_{k}|\exp i(\phi_{k} - 2\pi kr_{0})$$
$$|F_{-h-k}|\exp i[\phi_{-h-k} + 2\pi (h+k)r_{0}]$$

The sum ($\varphi_h + \varphi_k + \varphi_{-h-k}$) is called **triplet phase invariant** 18

STRUCTURE INVARIANTS: EXAMPLES

doublet invariant : $F_h F_{-h} = |F_h|^2$ triplet invariant : $F_h F_k F_{-h-k}$ quartet invariant : $F_h F_k F_l F_{-h-k-l}$ quintet invariant : $F_h F_k F_l F_m F_{-h-k-l-m}$

.

Some considerations

This information, apparently trivial, is very useful to succeed in all the steps of a modern Direct Methods procedure:

- 1) Scaling of the observed intensities and normalization of the structure factors
- 2) Estimate of the structure invariants
- 3) Application of the tangent formula
- 4) Crystal structure complation and refinement

EXPO: DIRECT METHODS IN ACTION

%.....

%normalization

%invariants

%phase (phases estimation) %fourier %continue

DIRECT METHODS PROCEDURE

$$I_h \rightarrow |F_h| \rightarrow |E_h|$$

Selection of the reflections with $|E_h| > 1.0 (N_{large})$

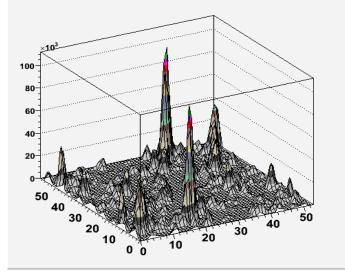
Setting up triplet relationships among N_{large} reflections

To apply the phasing procedure we need to know at least one pair ($\phi_k + \phi_{h-k}$); much better if we know more pairs ($\phi_k + \phi_{h-k}$)

Application of the Tangent formula to calculate and refine the phases

The phase determination process usually leads to more than one trial solution. Obviously most are not correct

FOM calculation


Allows an a priori estimate of the goodness of each phase set

List of sorted solutions and selection of the most reliable one

 $\rho(\mathbf{r})=T^{-1}[E_h]$

{|E|, φ} Electron density map calculation

Rietveld refinement process

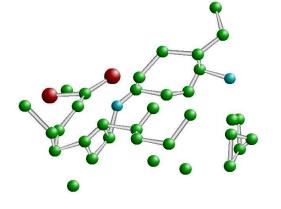
Automatic interpretation

EXPO: DIRECT METHODS IN ACTION

%.....

%normalization

%invariants


%phase

% fourier (E-map calculation)

% continue

AT THE END OF DIRECT METHODS.....

E-map: generally the obtained structure model is incomplete and distorted, and represents only a rough approximation of the real structure

The final model can be uninterpretable

before the final Rietveld refinement

necessary to complete and refine the structure

10DEL OPTIMIZATION

At the end of Direct Methods procedure, the most plausible sets of phases are ranked according to *CFOM*

CFOM exploits the integrated intensities values \longrightarrow it can be meaningless and the correct set of Direct Methods phases could not be the first one in the list

set	(tr	rial)	mabs	alcomb	pscomb	R(x, y)	cphase	cfom	nund	error	w-err
					1.57	25	181 				
1	(5)	1.353	0.902	0.214	0.510	0.807	0.866	16	88.12	92.56
2	(31)	1.361	0.899	0.216	0.498	0.751	0.844	6	87.33	92.50
3	(3)	0.985	0.859	0.543	0.417	0.815	0.843	10	94.55	94.60
4	(17)	1.227	0.908	0.198	0.474	0.703	0.832	3	87.80	87.72
5	(28)	1.223	0.911	0.191	0.487	0.680	0.825	4	83.82	83.78
6	(25)	1.100	0.879	0.215	0.421	0.728	0.823	1	87.83	93.30
7	(20)	1.226	0.886	0.167	0.462	0.712	0.822	5	95.76	95.94
1 2 3 4 5 6 7 8	(32)	1.081	0.916	0.306	0.446	0.547	0.779	20	91.91	85.03
9	(14)	1.221	0.868	0.106	0.472	0.603	0.770	12	94.59	97.95
10	(21)	1.102	0.911	0.267	0.440	0.520	0.766	10	89.09	93.05
11	(23)	1.091	0.903	0.304	0.420	0.530	0.765	10	89.09	92.07
12	(19)	1.075	0.891	0.292	0.412	0.511	0.750	9	84.12	91.47
13	(7)	1.101	0.884	0.234	0.418	0.516	0.748	11	89.54	92.51
14	(29)	1.083	0.855	0.221	0.406	0.448	0.704	3	87.80	90.85
15	(16)	0.938	0.763	0.281	0.394	0.561	0.688	7	89.55	88.45
16	(1)	0.835	0.716	0.158	0.344	0.630	0.685	4	81.18	86.86
17	(22)	1.538	0.648	0.017	0.504	0.615	0.636	19	90.48	88.42
18	(24)	1.001	0.697	0.132	0.354	0.500	0.624	3	89.56	80.06
19	(9)	1.543	0.621	0.012	0.499	0.576	0.604	20	98.62	96.03
20	i	4)	1.545	0.580	0.011	0.502	0.569	0.576	11	11.88	5.77
21	í	33)	1.540	0.575	0.012	0.483	0.600	0.584	1	11.30	5.08
22	(34)	1.417	0.849	0.099	0.529	0.968	0.893	1	0.00	0.00

SET #	ORIGIN	<frr></frr>	<w-err></w-err>	ORIGIN	<err></err>	<w-err></w-err>	Nref
1)	0.50 0.50 0.5	0 83.44	83.79	0.50 0.50 0.5	50 83.44	83.79	192
2)	0.50 0.50 0.5	0 83.70	83.00	0.50 0.50 0.1	30 83.70	83.00	202
3)	0.50 0.50 0.5	0 82.73	83.31	0.50 0.50 0.5	50 82.73	83.31	198
4)	0.50 0.00 0.0	0 80.78	80.24	0.50 0.00 0.0	00 80.78	80.24	205
5)	0.00 0.50 0.0	0 82.94	83.58	0.00 0.50 0.0	00 82.94	83.58	204
6)	0.50 0.00 0.5	0 85.22	88.46	0.50 0.00 0.5	50 85.22	88.46	207
7)	0.50 0.50 0.5	0 79.80	80.22	0.50 0.50 0.5	50 79.80	80.22	203
8)	0.00 0.50 0.0	0 83.30	83.64	0.00 0.50 0.0	83.30	83.64	188
9)	0.00 0.50 0.5	0 82.65	83.95	0.00 0.50 0.5	50 82.65	83.95	196
10)	0.50 0.50 0.0	0 82.73	83.00	0.50 0.50 0.0	00 82.73	83.00	198
11)	0.00 0.50 0.5	0 82.73	82.56	0.00 0.50 0.5	50 82.73	82.56	198
12)	0.00 0.00 0.0	0 84.12	84.83	0.00 0.00 0.0	00 84.12	84.83	199
13)	0.00 0.50 0.5	0 80.41	81.16	0.00 0.50 0.5	50 80.41	81.16	197
14)	0.50 0.00 0.5	0 81.66	83.55	0.50 0.00 0.5	50 81.66	83.55	205
15)	0.50 0.00 0.5	0 79.70	78.20	0.50 0.00 0.5	50 79,70	78.20	201
16)	0 00 0 00 0 0	0 81 18	82 29	0 00 0 00 0 0	00 81 18	82.29	204
17)	0.50 0.00 0.5	0 10.48	9.63	0.50 0.00 0.5	50 10.48	9.63	189
18)	0 00 0 50 0 5	0 79 02	81 95	0 00 0 50 0 9	50 79 02	81 95	205
19)	0.50 0.00 0.0	0 11.49	10.72	0.50 0.00 0.0	00 11.49	10.72	188
20)	0.00 0.00 0.0	0 11.88	11.21	0.00 0.00 0.0	00 11.88	11.21	197

No solution on set n. 1

3 Solutions on sets n. 17, 19 and 20 ²⁶

ALLTRIALS PROCEDURE

When no solution is found by using the default choice of *EXPO* (set of phases n. 1)

The exploration of all the 20 stored trials can automatically executed by *EXPO* through the non-default *ALLTRIALS* procedure. It automatically carries out, for each of the stored trials, the structure solution process

ile <u>P</u> attern <u>V</u> iew	Solve Refine Info
] 🖉 🎯 🖻 🛛	<u>R</u> AMM Procedure
4	Ø Explore trials
1	Simulated Annealing
60000	Simulated Annealing + Direct Methods <u>P</u> OLPO
-	Recycle in extra
50000	
40000	
20000	
10000-	

RBN	197 (Catholine) 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -		cycling	🔘 🔘 E-map 🔘 COVM
Selec	t all ne	w trials	1	
evelo ial	P Set	cfom	done	RF
	1	0.866	yes	52.652
	2	0.844	no	320
	3	0.843	no	1170
	4	0.832	no	51 7 3
P	5	0.825	no	12
	6	0.823	no	390
	7	0.822	no	1070
	8	0.779	no	874
	9	0.770	no	(9 <u>2</u>)
	10	0.766	no	390
	11	0.765	no	18 3 .5
	12	0.750	no	87.1
	13	0.748	no	8 <u>8</u> 9
	14	0.704	no	
	15	0.688	no	18 3 .9
	16	0.685	no	
	17	0.636	no	829
	18	0.624	no	-
	19	0.604	no	88 3 .5
	20	0.576	no	31 7 3

RBM		edures Fourier r	ecycling	🔿 E-map 🔘 COVM
Select	all r	new trials		
D I				10-10-10
Develop trial	Set	cfom	done	RF
	19	0.604	yes	37.020
	20	0.576	yes	37.877
	17	0.636	yes	43.487
	11	0.765	yes	47.523
	7	0.822	yes	50.183
	4	0.832	yes	50.386
	15	0.688	yes	50.519
	9	0.770	yes	50.621
	3	0.843	yes	51.038
	2	0.844	yes	51.242
	10	0.766	yes	51.272
	1	0.866	yes	52.652
	5	0.825	yes	53.071
	12	0.750	yes	53.390
	13	0.748	yes	53.784
	16	0.685	yes	54.470
	6	0.823	yes	54.947
	14	0.704	yes	55.741
	8	0.779	yes	58.033
100	18	0.624	yes	58.381

Main steps of the Reciprocal Space approach for solving powder crystal structures

Starting information: chemical formula experimental profile

- Indexation
- Space group determination
- Profile decomposition and intensity extraction

Structure solution by *ab initio* methods:

- Direct Methods
- Patterson method
- Maximum Entropy
- Charge Flipping

Structure Rietveld refinement

Solving the phase problem

28

PATTERSON METHOD

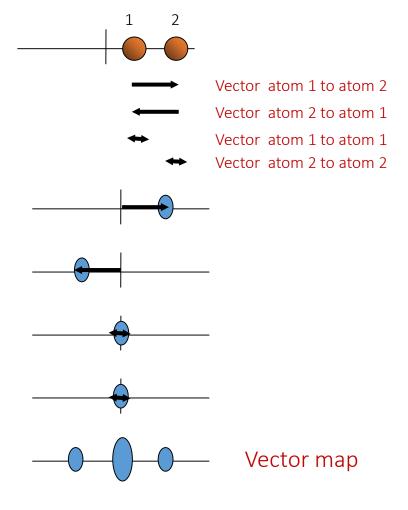
There are three very important points about the Patterson method:

• The Patterson map can be calculated from the diffraction data *without* knowing the phases

$P(u)=T^{-1}[|F(r)|^2]$

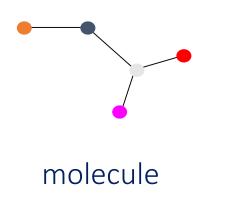
• Requires the presence of a heavy atom in the structure, e.g. Fe, Cl, S, etc

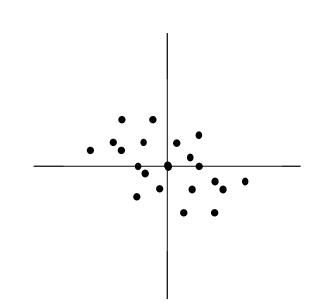
• The Patterson is a vector map of the structure


We can get the relative (not absolute) positions of atoms with respect to each other

THE VECTOR MAP OF TWO ATOMS

What is the complete set of vectors between two atoms?


There are four vectors, two equal and opposite interatomic vectors and two self vectors


The vector map has a large peak at the origin and two lower peaks on either side of it, separated from the origin by the distance between the two atoms

THE VECTOR MAP OF SOME ATOMS

We can generate a vector map of a molecule by putting each atom in succession at the origin

Patterson map

PATTERSON MAP

The Patterson map of N atoms contains N² peaks:

- N peaks at the origin, representing the vector
- between each atom and itself
- N(N-1) peaks within the unit cell

The map can be very congested and difficult to interpret. In addition, the Patterson map is centrosymmetric, which further complicates cells for non-centrosymmetric lattices.

The intensity of each peak is proportional to the product of the atomic numbers of the two atoms to which the vector refers

Patterson function particularly effective for the identification of the position of heavy atoms when most of the other atoms are light 32

PATTERSON METHOD

Patterson methods are often the first choice for the solution of structures containing a few heavy atoms

If they have a sufficiently high atomic number, they can be used as a good initial model to which one can apply the so-called *Method of Fourier Recycling*, to obtain the light atom positions and then to recover the complete structure

EXPO: PATTERSON METHOD IN ACTION

%.....

%normalization

%patterson

inverse

% continue

To activate the procedure of calculating the |F| values from an inverted suitably modified Patterson map

The values are then used as starting point in the Le Bail algorithm for extracting new structure factor moduli from the experimental pattern Main steps of the Reciprocal Space approach for solving powder crystal structures

Starting information: chemical formula experimental profile

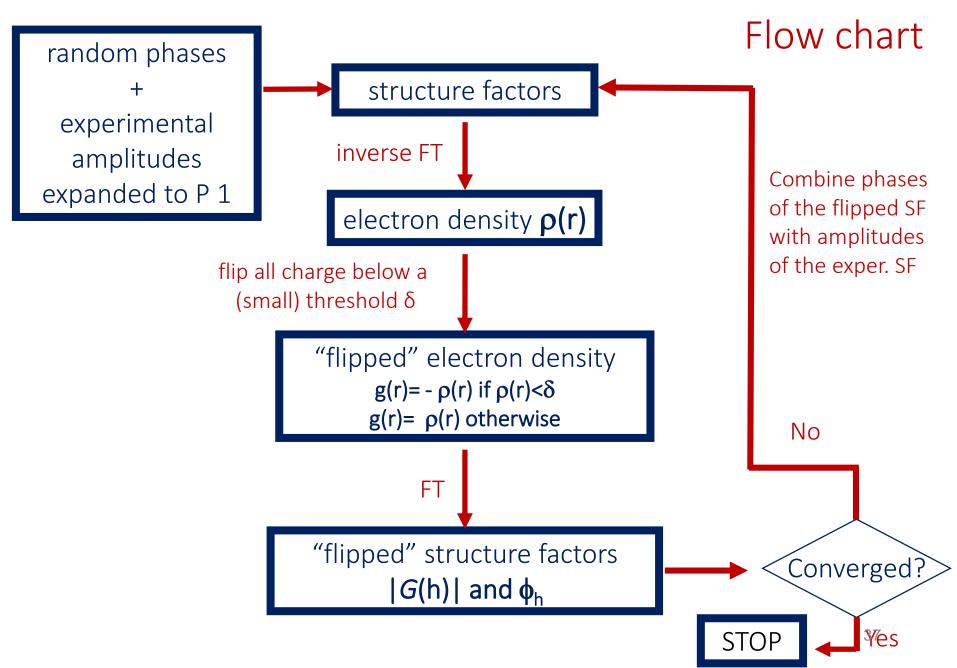
- Indexation
- Space group determination
- Profile decomposition and intensity extraction

Structure solution by *ab initio* methods:

- Direct Methods
- Patterson method
- Maximum Entropy
- Charge Flipping

Structure Rietveld refinement

Solving the phase problem


CHARGE FLIPPING: THE PRINCIPLE

Proposed for single crystal data, has been also adapted to powder diffraction data

It is an *ab initio* dual-space iterative method switching back and forth between real and reciprocal spaces for the determination of an approximate electron density

Needs only lattice parameters and the set of the experimental structure factors moduli; neither chemical composition nor symmetry information is required. The structure is solved in *P*1

CHARGE FLIPPING: THE PRINCIPLE

CHARGE FLIPPING

Charge flipping reconstructs the density always in P1 where the maxima can appear anywhere in the cell

In higher symmetry the choice is limited with a lower effectivity

Advantages:

- No need to know the symmetry, which can be read out from the result
- It is extremely simple and easy to implement

Disadvantages:

- The structure is randomly shifted in the cell: it is necessary to locate the origin of the space group
- suffers from the inaccuracy of the extracted reflection ³⁸

CHARGE FLIPPING METHOD

It requires atomic resolution to work: better than 1.2 Å for organic compounds, 1.6 Å for heavy atom structure

The problem has been faced by introducing in the algorithm some modifications like the histogram matching loop

CONCLUSION

- Crystal structure solution by powder diffraction data is not easy.
- Great experimental, methodological and computing progress has been reached.
- In spite of that, powder solution is still a challenge in many cases.

The effort is to make solution by powder comparable with the single crystal case: sophisticated software in which, constantly evolving theories are implemented, are on the market

Special Issue

Crystal Structure Characterization by Powder Diffraction *Guest Editor*:

Dr. Angela Altomare

Dr. Rosanna Rizzi

Institute of Crystallography, National Research Council-CNR, Bari, Italy

E-mail: powder@ic.cnr.it

Submission Deadline: 31 December 2019

We invite contribute of papers that, while discussing the followed computational, methodological, and/or experimental strategies, point out the essential and advanced contribution of powder diffraction in identifying the unknown crystal structure of a compound.

Academic Open Access Publishing since 1996

Crystals Editorial Office MDPI AG St. Alban-Anlage 66 4052 Basel, Switzerland Tel: +41 61 683 77 34 Fax: +41 61 302 89 18 www.mdpi.com crystals@mdpi.com

THANK YOU FOR YOUR ATTENTION