

EXPO&more International Workshop

Direct space methods solution

Methods of Structure Solution

Other methods:

Structure

solution

methods

- charge flipping
- molecular replacement

Traditional approaches:

- direct methods
- Patterson methods

Direct space methods

Alternative words:real space, global optimization, global search

- Bari 3 October 2019) EXPO&more International Workshop (30 September

W. I. F. David and K. Shankland. Structure determination from powder diffraction data. Acta Cryst. A64, 52 (2008) https://doi.org/10.1107/S0108767307064252

Global Optimization Methods

Global optimization methods

- Bar

3 October 2019)

EXPO&more International Workshop (30 September

Deterministic methods
 Branch and Bound methods
 Cutting Plane methods
 Interval methods

Heuristic strategies

Genetic Algorithms (GA) Simulated Annealing (SA) Tabu Search Ant Colony Optimization Particle Swarm Optimization (PS) Bee Algorithms Firefly Algorithms Harmony Search Big Bang-Big Crunch

Global optimization methods

- Bar

3 October 2019)

EXPO&more International Workshop (30 September

 Deterministic methods Branch and Bound methods Cutting Plane methods Interval methods

Heuristic strategies

Genetic Algorithms (GA)* Simulated Annealing (SA)* Tabu Search Ant Colony Optimization Particle Swarm Optimization (PS)* Bee Algorithms Firefly Algorithms Harmony Search Big Bang-Big Crunch*

(*) employed in solving crystal structure

Global optimization methods

Deterministic methods
 Branch and Bound methods
 Cutting Plane methods
 Interval methods

Heuristic strategies
 Genetic Algorithms (GA)*
 Simulated Annealing (SA)*

Tabu Search Ant Colony Optimization Particle Swarm Optimization (PS)* Bee Algorithms Firefly Algorithms Harmony Search Big Bang-Big Crunch

(*) employed in solving crystal structure

Widely used and with the largest impact

Various modifications:

- parallel tempering (PT)
- adaptive simulated annealing

Simulated annealing algorithm: the annealing steps

Simulated annealing algorithm: the annealing steps

Simulated annealing algorithm: the annealing steps

Simulated annealing algorithm

Simulated annealing algorithm

Initial random configuration

- Bari 3 October 2019) Т EXPO&more International Workshop (30 September

Solutions

Execute

Big bang-big crunch optimization

Big bang phase Creation of the population

Candidate solutions are spread all over the search space in a uniform manner. Cost function values of the individuals are calculated

contraction

Big crunch phase

Center of mass is calculated and chosen as the point of new big bang phase

Hybrid version: SA is applied on selected individuals before the big crunch

Comparison

Traditional approaches	Direct space methods
-Do not use chemical knowledge	+Can incorporate a massive amount of prior chemical information
-Complexity of the problem depends on the number of non H-atoms in the a.u.	+Complexity of procedure depends on the number of degrees of freedom (DoF).
HO HO HO HI HI OH OH OH OH OH OH OH OH OH OH	tetracycline (32 non-H atoms and 8 DoF) can be solved using global optimization
-Take advantage by using data of higher resolution	+High resolution is not needed. Default resolution: 2-2.5 Å.
+Generally require less time to run	-Take time and patience. For large

-Take time and patience. For large molecules: faster computer, run overnight, parallel program

Building starting model

It is necessary to know the molecular connectivity.
 Spectroscopic techniques (MS, NMR) can be useful

Crystal structure can be described as a combination of building blocks

Building starting model

Check for similar molecules in databases or in the literature

 Optimize molecular geometry by computational chemistry programs

Free Chemistry Databases

- PubChem: https://pubchem.ncbi.nlm.nih.gov/
- NIST Chemistry WebBook: http://webbook.nist.gov/chemistry/
- Drugbank: http://www.drugbank.ca/

Other databases: ZINC, eMolecules, ChEBI, NMRShiftDB, ...

Chemical file formats: *sdf, mol, mol2, cml, SMILES, ...*

http://www.ba.ic.cnr.it/ocher

Bar

3 October 2019)

Crystal Structure Databases*

Non-commercial database are in red

- CSD (Cambridge Structural Database) (organics & organometallics): http://www.ccdc.cam.ac.uk/
- ICSD (Inorganic Crystal Structure Database)
 (inorganics, elements, minerals & intermetallics): http://icsd.ill.fr/
- COD (Crystallography Open Database) (general database): http://www.crystallography.net/

Other databases: ICDD PDF-4+, American Mineralogist Crystal Structure Database, MINCRYST, Zeolite Structures Database, ...

File format: CIF (Crystallographic Information File)

*Joint special issue: Acta Cryst. B58, 317-422 (2002)

Load crystal structures from COD

"View" menu \rightarrow "Jav Molecular Viewer" "File" menu \rightarrow "Import Fragment" menu \rightarrow "From COD" "Modify" menu \rightarrow "Add Fragments" menu \rightarrow "From COD"

				/home/corrado/expo/paracetamol.xy _ 💷
			File	Pattern View Solve Refine Info Help
			12	
			30000	- Observed - Calculated - Background - Difference
ext:		Import fragment from COD	×	
ormula:	C8H	19NO2		- Ullellellelle
lements:				20 30 40 50 60
OT these elemer	nts:			
o. of elements m	nin and max:			paracetamol _ 🗆 ×
	Sourch			File Modify Select View Tools Info
	Search			🗇 🙆 🇚 💫 💥 🧷
COD Number	Spacegroup	Formula Cell parameters	Cell volume	
1520183	Pna 21	C8 H9 N 02 10.5129 17.0435 4.0675;90	90 90 728.799988	
1520187	Pna 21	C8 H9 N 02 10.5957 7.6655 9.2544;90	90 90 751.650024	N
1520188	Pna 21	C8 H9 N 02 10.5129 17.0435 4.0675;90	90 90 728.799988	
1548348	Pcab	C8 H9 N 02 7.232 11.76 17.16;90 90 9	0 1459.430054	
2006392	P 1 21/n 1	C8 H9 N 02 10.795 8.271 17.803;90 92	.957 90 1587.400024	
2007205	P 1 21/n 1	C8 H9 N 02 7.0939 9.2625 11.657;90 9 C8 H9 N 02 15.7794 4.8525 9.8771;90 9	7.672 90 759.090027 97.952 9 749.010010	d d
		0		
2009919	P 1 21/n 1	С8 Н9 N 02 6.664 16.83 7.153;90 107.	898 90 763.400024	
2013900	P 1 21/c 1	C8 H9 N O2 8.5969 5.6053 15.5397;90 9	744.489990	1 🐼 🛛 🝸 🏷 🔍 🔄 🖉
emical names	Acetaminophen:	4-acetaminonhenol	00 00	
concar names.	Dmitny Yu, Nour	www.Marina A. Vasilchonko: Judith A. K. Howard		
bliography:	The Monoclinic F Acta Crystallogra	form of Acetaminophen at 150K aphica Section C, 1998, 54, 653-655.		
	https://doi.org/1	0.1107/S0108270197018386		
records found.				
	A OK	A Download CIE	M Cancel	

Geometry optimization

- Bar

3 October 2019)

Workshop (30 September

EXPO&more International

Three levels of theory

- Molecular-mechanics force fields (MM)
- Semi-empirical methods (SE)
- Ab initio methods: Hartree–Fock methods, density functional theory (DFT)

Strategy: $MM \rightarrow SI \rightarrow DFT$

Programs: MOPAC, Gamess, NWChem, Gaussian, ABINIT, Quantum ESPRESSO, ORCA, Molpro, Q-Chem, octopus, etc.

The Use of Open Babel

- Molecular-mechanics force fields (MMFF99 and UFF provided by **Open Babel library**)
- Able to process input and output files of common quantum-chemistry packages: GAMESS-US, NWChem, Gaussian, CRYSTAL, ABINIT, Quantum ESPRESSO

Geometry optimization by MOPAC

MOPAC2016[™] is a semiempirical quantum chemistry software package available FREE for academic, not-for-profit use. Download link: http://openmopac.net/downloads.html

	MOPAC Input	×
	Title: Title	
View Tools Info		
🖌 🖉 Add Hydrogens 🕨	Method: PM7 V Charge: 0	
Second Se		
3 Bond Settings	Multiplicity: Singlet V Format: Cartesian V	
Complete		
Regularize	MOPAC Program: /opt/mopac/MOPAC2016.exe	
🕸 Enantiomorph		
Transform	Preview	
Optimize Geometry Doptimize	AUX LARGE CHARGE-0 STNGLET PM7	
Optimize Crystal Structure by DFT-D Optimize Selected Atoms	Title	
☆Overlay Structures MOPAC		
	C 10.11594 1 4.95629 1 9.84836 1	
★ Delete Model	9.45992 1 3.86442 1 9.26850 1	
Centroids	10.04725 1 3.18441 1 8.19546 1	
Powder Diffraction Pattern	C 11.29059 1 3.59627 1 7.70228 1	
Pair Distribution Function (PDF)	C 11.94663 1 4.68815 1 8.28213 1	
	C 11.35930 1 5.36816 1 9.35518 1	
Bond Valence Sum	C 9.46118 1 5.71439 1 11.04459 1	
	L 8.39955 I 0.70405 I 10.47297 I	
	Submit Reset Cancel	

Graphical User Interface for MOPAC2016

- Bari

Molecule editor

A molecule editor allows

- Sketch molecules in 2D or 3D format
- Optimize the geometry by force field method
- Create input file for the quantum-chemistry calculations
- Read output files of the most common computational packages

Some free available software

- ACD/ChemSketch http://www.acdlabs.com
- Avogadro http://avogadro.openmolecules.net/wiki/Main_Page
- MarvinSketch http://www.chemaxon.com/products/marvin/
- Gabedit: http://gabedit.sourceforge.net/

Building starting model: example 3

Building starting model: example 4

Building starting model

Stereochemistries will not be altered during simulated annealing. Attention to compounds with more than one chiral center and cis/trans isomerism

Attention to non planar ring systems or unusual combinations of elements in functional groups. Check for similar molecules in the CSD or in the literature

Building starting model

The volume of the unit cell can be used to determine the number of independent building blocks in the asymmetric unit from the known crystal density

Average volume occupied by atom $\approx 15 - 20 \text{ Å}^3$

The success of the structure determination depends crucially on the accuracy of the input molecular model.

Experience and chemical intuition are required to build the correct model

H atoms

H atoms do not contribute significantly to X-ray diffraction, they can be ignored during the structure solution

Eliminating the H atoms reduces the number of atoms and DoFs, decreasing the time to evaluate CF for each trial structure

Delete H atoms using the GUI or using the deletehydro directive

- Bari

3 October 2019)

Т

EXPO&more International Workshop (30 September

Hydrogen calculation

Good morning, corrado. Welcome to jav

Hydrogen atoms are positioned geometrically at X-ray distances

- Cost function
- Resolution
- Random seed
- Number of moves
- Number of SA runs
- Starting temperature
- Temperature reduction factor

	Globa	I optimizatio	on dialog	
SA conditions	External DOF	Internal DOF	Pattern	
General con	ditions			
Cost functi	on: R weig	hted profile	\$	
Resolution:	2.000	N. of refle	ctions: 103	2thmax: 45.305
Random se	eed: 1	-		
Nr. of runs	: 10	~		
Simulated a	nnealing opti	ions		
Starting te	mperature:	10.0	00	✓ automatic
Number of	moves:	60	< >	✓ automatic
Temperatu	re reduction fa	ctor: 0.90	0	
Number of ref	ined parameter	rs: 8		Solutions
🔯 Help			N Qui	t 🖾 Execute

- Cost function
- Resolution
- Random seed
- Number of moves
- Number of SA runs
- Starting temperature
- Temperature reduction factor

	Globa	l optimizatio	on dialog	
SA conditions	External DOF	Internal DOF	Pattern	
General con	ditions			
Cost functi	on: R weig	hted profile	\$	
Resolution:	2.000	N. of refle	ctions: 103	2thmax: 45.305
Random se	eed: 1	~		
Nr. of runs	: 10	-		
Simulated a	nnealing opt	ions		
Starting te	mperature:	10.0	00	automatic
Number of	moves:	60	×	✓ automatic
Temperatu	re reduction fa	ctor: 0.90	0	
Number of ref	ined paramete	rs: 8		Solutions
🔯 Help			Qui	t 🖾 Execute

- Cost function
- Resolution
- Random seed
- Number of moves
- Number of SA runs
- Starting temperature
- Temperature reduction factor

	SA conditions	External DOF	Internal DOF	Patterr	ı		
	General con	ditions					
•	No. of	molec	ular fi al Do	ragi Es	me	ents	5
•	No. of	interna exibility	al Dol 1 of th	Fs e m	nol	ecule	
•	No. of The fle		al Dol of th	Fs e m		ecule	
•	No. of The fle Starting te Number of	interna exibility mperature: moves:	al Dol of th	Fs em		ecule ⊻ automatio	
•	No. of The fle Starting te Number of Temperatu	interna exibility mperature: moves: re reduction fac	al Dol of th	Fs em		ecule ⊻ automatio ✓ automatio	
•	No. of The flee Starting te Number of Temperatu	interna exibility mperature: moves: re reduction fac	al Dol of th	Fs em		ecule	c ior

- Bari 3 October 2019) Т EXPO&more International Workshop (30 September

Cost Functions

Integrated intensities R factor

Whole profile R factor

• Other cost functions: $CF_{geometry restraints}, CF_{bond valecence}, CF_{antibumping}$

Using expo2014 for direct-space solution

- Bari

2019)

3 October

EXPO&more International Workshop (30 September -

expo paracetamol.exp -auto

Non-molecular compounds

Crystal structure of Sb₂(PO4)₃*

EXPO&more International Workshop (30 September – 3 October 2019) - Bar

*Jouanneaux, A., Verbaere, A., Guyomard, D., Piffard, Y., Oyetola, S. & Fitch, A. N. (1991). Eur. J. Solid State Inorg. Chem. 28, 755-765.

Non-molecular compounds

Non-molecular compounds

You cannot know the number and the type of the polyhedra

Some atoms are expected to fall on special position

Different building blocks share some atoms

Dynamical occupancy correction (DOC)

- Bari

3 October 2019)

(30 September –

Workshop (

EXPO&more International

Falcioni, M. & Newsam, J. M. (1989). *Nature* **342**, 260-262.

Favre-Nicolin, V. & Černỳ, R. (2002). J. Appl. Cryst. 35, 734-743

Dynamical occupancy correction (DOC)

doc Nil

EXPO&more International Workshop (30 September – 3 October 2019) - Bari

Dynamical occupancy correction (DOC)

Global optimization dialog						
SA conditions External DOF Internal DOF Anti-bump Pattern			Ator	mic parameters ref	finement	1 11
Internal DOFs	Atom	Occ.	B[iso]	Refine B[iso]	Shift or tyz	✓ D.O.C.
Torsion Reline Value Lower Opper	Sb1	1.00000	1.00000			v
	Sb2	1.00000	1.00000			v
	P1	1.00000	3.00000			e
	01	1.00000	3.00000			v
	02	1.00000	3.00000			Ø
	03	1.00000	3.00000			Ø
	04	1.00000	3.00000			
	P2	1.00000	3.00000			
	05	1.00000	3.00000			
Atomic Parameters and Dynamical Occupancy Correction	Maximur	m shift on	position	0.500	× Cano	¢ ok
🔞 Help 🖓 Quit 🖾 Execute						

DOC slows down the computation time so it should be avoid if no special positions or shared atoms are expected.

SA applied to non-molecular compounds

- Bari

ernational Workshop (30 September – 3 October 2019)

EXPO&more In

SA with DOC $Sb_{2}(PO_{4})_{3}$ Polyhedra rapresentation of $Sb_2(PO_4)_3$ by SA with DOC

Delete duplicate atoms

Direct Space with Low Quality Diffraction Pattern

- Bari

EXPO&more International Workshop (30 September – 3 October 2019)

- Bond valence restraints
- Anti-bumping restraints
- Molecular geometry restraints

Bond Valence Restraints

Atomic valence V, of atom i in crystal structure is the sum of individual bond valences S_i

$$V_i = \sum_j S_{ij} \qquad S_{ij} = exp(\frac{R_0 - R_{ij}}{B})$$

 R_{ij} distance between atoms *i* and *j*

R₀, B bond valence parameters (**bvparmyyyy.cif** maintened by I.D. Brown and available from http://www.iucr.org/resources/data/datasets/bond-valence-parameters)

$$G_{ii} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(V_i-V_i^0)^2} \quad \text{global-instability index}$$

The estimated values V_i can be incorporated as restraints in the cost function (*):

i

$$CF_{VB} = \sum w_i (V_i - V_i^0)^2$$

* J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal & V. Caignaert, (1990). Nature 346, 343 - 345

Check Bond Valence Sum

- Bari

2019)

October

3 1

×

2.585

2.309

0.224

0.473

EXPO&more International Workshop (30 September

9 03

10 07

0

0

0.8002

0.9298

0.3350

-0.0191

🔀 Close

0.8490 (-x, -y, -z)+(2,-1,1)

0.5666 (x, y, z)

Imposing anti-bumping restraints

$$CF_{bump} = \sum_{ij}^{n} w_{ij} (d_{ij}^{min} - d_{ij}^{model})^{2k}$$

$$\begin{aligned} k &= 2 \\ d_{ij}^{model} < d_{ij}^{min} \\ d_{ij}^{min} &= \epsilon (R_i^{vdW} + R_j^{vdW}) \end{aligned}$$

SA co	onditions	Extern	al DOF	Internal DOF	Anti-bump	Patter	m
		Extern		internat DOI		, accer	
	1 ()	lone		Only for C,N	1,O,S	Sele	ct from list
Weig	ht 1.00	0		Scale	factor on dist	tances	0.700
List	of anti	-bump re	estraints				
-	Atom 1	Atom 2	Distanc	e Activate			
	С	С	3.400				
	С	0	3.220				
	С	S	3.500				
	0	0	2.736				
	0	S	3.320				
	S	S	3.600				
Jum	ber of re	fined par	ameters	: 7			🔶 Solutions
					_		
Q	Help				e e	uit	Execute

All nonbonded interactions between atoms that are separated by a path of bonds containing 4 rotable bonds or less are excluded

Only 1-5 interactions are considered

Imposing anti-bumping restraints

Molecular Geometry Restraints

$$CF_{restraints} = \sum_{i} w_i MAX(0.0, |d_{target_i} - d_{AB_i}| - tol_i)^2$$

 d_{AB_i} = distance between two atoms A and B

 d_{target_i} = ideal distance

 tol_i = permitted tolerance

 w_i = user supplied weight

Rarely improve the success rate of the solution search for good quality data

Restraints can slow or prevent a structure solution

Non planar ring systems

Attention to non planar ring systems or unusual combinations of elements in functional groups

Structure Solution of Diltiazem Hydrochloride

C4

```
%Structure diltia
%Job diltiazem Hydrochloride
%Data
Cell 42.190 9.075 6.037 90
                                90
                                    90
SpaceGroup p 21 21 21
Content c 88 n 8 o 16 s 4 cl 4 h 108
Pattern pd 0029.pow
Wavelength 1.54056
%fragment diltia nw noH break.mol
%fragment atoms Cl
%sannel
nrun 100
niter 5000
rest C3 C4
%save diltia.expo
```

Parallel Machines

Notebooks

Typically 2-6 cores

Typically 2-10 cores

Typically 4-56 cores

Up to 3000 cores

Marconi by CINECA (Italy) 244.800 cores in total

Three Programming models

- Bar

3 October 2019)

EXPO&more International Workshop (30 September

Message Passing Interface (MPI)

Distributed-memory architecture

Open MultiProcessing (OpenMP)
 Shared-memory architecture

 Compute Unified Device Architecture (CUDA) Open Computing Language (OpenCL)

Coprocessor architecture

Three Programming models

- Bar

3 October 2019)

EXPO&more International Workshop (30 September

Message Passing Interface (MPI)

Distributed-memory architecture

Open MultiProcessing (OpenMP)
 Shared-memory architecture

 Compute Unified Device Architecture (CUDA) Open Computing Language (OpenCL)

Coprocessor architecture

Running the Parallel Version of EXPO2014

- Computer with multi-core CPUs and Linux environment.
- Open MPI installed.
- Open MPI installed.
 Compiling EXPO2014 from source and linking with MPI libraries
 Run Expo2014 by using the launcher mpirun with the appropriate options.

mpirun -np 10 expo input file.exp

EXPO2014 Virtual Machine

e Machine Help		
Tools		
EXPO2014 Virtual Machine Powered Off	General ExPO2014 Virtual Machine Operating System: Uburtu (44-bi) Settings File Location: //ometorrad6v/rtualBox VMs/EXPO2014 Virtual Machine System	Preview
	Base Memory: 4006 MB Processor: 6 Boot Order: Floppy: Optical, Hard Disk Acceleration: VT-s(AMD-V, Nested Paging, KVM Paravirtualization	Machine
	Display Video Henory: 100 M8 Graphics Controller: VMSVGA Accelerator: 30 Remote Desktop server: Diabled Recording: Diabled	
	Storage Controller: IDE IDE Scontroller: IDE Controller: SATA Controller: SATA STAT Por 0: EXPO2014 Virtual Machine Clone-disk1.vdl (Normal, 500,00 GB)	
	() Audio Host Driver: PulseAudio Controller: UCH AC97	
	Network Adapter 1: Intel PRO/1000 MT Desktop (NAT)	
	USB USB Controller: OHCI Device Eliferc: 0.0 article	
	Street Intel: O (Sector)	
	Bescription	

Activiti	es E	🛛 Terminal 🔫						s	jio 16:00								- 4	40
. 🚯													zilla Firef				¢	
		Recent	(gal)	1.9		1 Ge	neral infor	mation – E	Expo: X	+								
		Homo	ACCESS OF A	901 9010		101 101 101) > C	ŵ	00	www.ba.ic.cnr.it	/softwareic/e	xoo/general	P	🖂	☆	IIIN I	n 🏾	
<u> </u>			pd_0009.	phenyla.bin	phenyla.	phe												
AV		Desktop	xye		exp	ex		-										
60		Documents																
		Downloads	phenyla	phenyla	phenyla	pher												
		Music	best3.cif	best4.cif	best5.cif	best												
-	ø	Pictures					-	xpo	2014						1	MENU		
		Videor			expo@exp	po-Virtuali	Box: ~/Des	ktop/Tut	orial/Di	rect space metho	ds solution/	ohenyla						-
			File Edit Vi	ew Search Ter	minal Help													
		Irash	expo@expo-\	/irtualBox:~,	/Desktop/Tu	itorial/D	Direct sp	pace met	hods s	olution/phenyl	la\$ mpirun	-np 4 expo	phenyl					1
0		Other Locations	Expo2014 Results w	will go on w will be writ	without gra ten in the	phics. file												
			F	ohenyla.out														
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Direct so	bace method w	vill run or	4 cou-c	ores											
A				List of stru	uctural mod	dels sort	ted accor	ding to	cost	function								
_			RUN			Ratio		time		saved on								
				12.4677	39	2.194	61	0 <i>m</i> 25.	236s	phenyla_bes	st1.clf							1
				12.4701	54	2.194	61	07 25.		phenyla_bes	st2.clf							
			9	12.4701	54	2.194	61	n Om 25.	223s	phenyla_bes	st3.clf							
			8	12.4/14	13	2.194	01	1 07 27.	0275	phenyla_bes	st4.cur							
				12.4719	14	2 194	01	01 21.	0025	phenyla ber	th cif							
				12.4736	00	2.195	61	00 18.	8965	phenyla bes	t7.cif							
				12.4753	10	2.195	61	On 27.	6885	phenyla bes	ts.cif							
			10	12.4757	77	2,195	et	07 26.	4665	phenvla bes	st9.clf							
				12.4773	19	2.195	61	n 0m 23.	951s	phenyla bes	st10.clf							
			expogexpo-\	/irtualBox:~	/Desktop/Tu	torial/C	Direct sp		hods s	olution/phenyl	la\$							

3 October 2019) - Bari

EXPO&more International Workshop (30 September –

Download and installation

http://www.ba.ic.cnr.it/softwareic/expo/parallelism-in-expo2014-for-structure-solution-by-direct-space-method/

Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

Structure solution of small peptide

E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, M. Crisma, G. M. Bonora, and C. Toniolo, J. Am. Chem. Soc. 104, 2437 (1982)

Structure of mono-acid β-triacylglycerols

Robert B. Helmholdt, René Peschar and Henk Schenk. Acta Cryst. (2002). B58,134±139 https://doi.org/10.1107/S0108768101016330

Assessing the solution

- Bari

October 2019)

3

Т

EXPO&more International Workshop (30 September

- Agreements factors
- Visual match between calculated and observed profile
- Reproducibility of solution

Assessing the solution

Assessing the solution

- Bar

3 October 2019)

Т

- Crystal packing
- Check close contacts, void spaces, likely iterations
- Network of interactions: hydrogen bonds and short contacts

Starting model is incorrect:

- chemical formula is wrong
- bond distance and angle are not entirely accurate
- number of building blocks is wrong
- missing solvent

•

- Check the compositional information (MS, SEM/EDS, XRF, ICP, NMR)
- Try different combination of building blocks
- Check the molecular stereochemistry, or ring conformation
- Improve your model with CSD or building package

Poor quality diffraction pattern Solution:

- Collect new data
- Add restraints or anti-bump restraints

Systematic problem in powder diffraction data

- Preferred orientation
- Ka2 contributions

- Collect new data
- Refine preferred orientation parameters

	h	k	1	Gfactor	
plane	0	0	1	1.000000	

🙆 Help

Quit

50 Execute

- Bari

3 October 2019)

EXPO&more International Workshop (30 September

For complex structure (internal DOF > 10) the default SA conditions can be not sufficient

- Increase the number of moves (niter directive) and/or runs (nrun directive)
- Try with slower temperature reduction

The assumptions about thermal factors are invalid

- Try altering the non-hydrogen atom temperature factors
- Check temperature factors for similar structure

Space group and cell are not correct

 It may be necessary to carry out a series of independent calculations to test different potential space groups and/or unit-cell choices

Multiple phase powder diffraction patterns

- Bari

3 October 2019)

EXPO&more International Workshop (30 September -

%job Sample ID 1h %structure sample1h %data pattern cpd-1h.dat wave 1.54056 1.54439 0.5 %crystal name Al2O3 **cell** 4.75920 4.75920 12.992 90 90 120 space R-3c fragment atoms Al O doc %crystal name CaF2 **cell** 5.4649 5.4649 5.4649 90 90 90 space F m3m fragment atoms Ca F doc %crystal name ZnO cell 3.2501 3.2501 5.2071 90 90 120 space P 63mc fragment atoms Zn O J. Appl. Cryst. (2001). 34, 409-426 doc

%sannel

Multiple phase powder diffraction patterns

Combined powder X-ray diffraction data and quantum-chemical calculations

Optimization of the molecular geometry to obtain accurate starting models

Restraints in the Rietveld refinement

H atoms

Solve ambiguities

 (e.g., space groups, torsion angles)

Refinement of crystal structure

Validation of experimental crystal structures
Assessing the solution with DFT-D

Theoretical approach: plane wave (PW) density functional theory with dispersion correction (DFT-D)

RMSD for non H-atoms above 0.25 Å could indicate incorrect experimental crystal structure *

Ibuprofen RMSD=0.023 Å

Experimental crystal structure

DFT-D3 with NWChem

Jacco ven de Streek et al. Validation of molecular crystal structures Acta Cryst. (2010). B66, 544–558

DFT-D: Howto

Software	Academic price (€)	Link
VASP	4,000	www.vasp.at
CASTEP	1,800	www.castep.org
CRYSTAL	1,000	www.crystal.unito.it
Quantum ESPRESSO	free	www.quantum-espresso.org
NWChem	free	www.nwchem-sw.org
Abinit	free	www.abinit.org

Hardware: multi-core Linux Workstation Time: approx. 100 hrs for small molecules on single CPU

/home/corrado/expo/merca.cit

Tools Info

Contact, software download and info http://www.ba.ic.cnr.it/softwareic/expo/

Acknowledgements

Colleagues of the research team A. Altomare, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio

> **Other collaborators** R. Mallamo, F. Ciriaco

Computer resources CINECA under ISCRA initiative, project HP10CQK3FF