RootProf: principles, workflow and new graphical user interface

Rocco Caliandro

CNR Istituto di Cristallografia

IC | JI

CNR – Institute of Crystallography – Bari

E-mail: rocco.caliandro@ic.cnr.it

Multi-technique in situ experiments

New generation X-ray sources

Multi-probe experimental setups

Sensitive and fast detectors

Monitor structural dynamics

Multiple measurements

Simultaneous analysis of more than one variable

Analysis of dependence dependent variables are explained or predicted by other variables (PLS, Least squares)

New data analysis methods

Data Matrices

Multivariate analysis

Prompt location of active atoms

Fast extraction of structural kinetics

- ✓ All profiles processed at the same time
- Probe-independent processing
- Adapted variants of existing methods

Combined information from different techniques

RootProf

Availability: <u>www.ba.ic.cnr.it/softwareic/</u>

Documentation: www.ba.ic.cnr.it/softwareic/rootprof

Forum: groups.google.com/forum/#!forum/RootProf

Journal of Applied Crystallography

ISSN 1600-5767

RootProf: software for multivariate analysis of unidimensional profiles

Rocco Caliandro* and Danilo Benny Belviso

Online help

www.ba.ic.cnr.it/softwareic/rootprof

Overview User guide Download/Install/Run Updates/form

Tutorials

Qualitative analysis Unsupervised quantitative analysis Supervised quantitative analysis Covariance analysis Size analysis Size analysis Analysis of FT-IR spectra Analysis of XAS spectra Analysis of SAXS profiles Analysis of single-crystal patterns

Developed at CERN for the data analysis of High-Energy Physics experiments

Freely available from https://root.cern.ch/releases

Version 6 (Linux, Mac) → RootProf v15 Version 5 (Windows) → RootProf v14

Besides the specific RootProf documentation, users can take advantage of the documentation and discussion of the wide community of ROOT users

RootProf

Root script, driven by the user through a GUI or a command file

Run ROOT

Run RootProf GUI

Prepare command file & Run RootProf from GUI

Inspect text output and editable graphic windows

RootProf can be modifyed to introduce new developments (C++ code)

Workflow

www.ba.ic.cnr.it/softwareic/rootprof

Step 1: Input

	JI
RootProf Input PreProc File Get data file	cessing Task Output Run 9(s)
Skiplines O Skipdata Range Range Ranges of variable	Datatype General ▼ ☐ StandardRx ☐ IgnoreSigma

SOB Oper			
Look in: 🔁 publ	ic	▼ 🖻 💣 🏢 🏢	□ <u>M</u> ultiple files
AADA-1A.TXT.ext	ract	CBZ-SAC.asc.extract	🕒 Qualita
AADA-4B.TXT.ext	ract	CBZ_III.asc.extract	🕒 Quanti
AADA-5A.TXT.ext	ract	🕒 Clustering Gui. C	READ
AADA-6A.TXT.ext	ract	🕒 Covariance Gui. C	📄 Rocco, -
AADA-7A.TXT.ext	ract	Cr6_exafs_2_flow_scan02_r	norm.nor 🗋 Rocco
AADA-8A.TXT.ext	ract	🕒 Crystallinity Gui. C	📄 Rocco, -
Archive created by	/ free jZip.url	🕒 Generation Gui. C	🗋 Rocco,
 III 			۲.
File name:			<u>O</u> pen
Files of type:	All files (*)	•	Cancel

CBZ-SAC mixtures

Sample n.	CBZ III	SAC	CBZ-SAC	File name
0	0	0.565	0.435	Rocco_S3_mac.txt
1	0.500	0.500	0	Rocco_S5_mac.txt
2	0.500	0	0.500	Rocco_S7_Como.txt
3	0.347	0.334	0.319	Rocco_S11_mac.txt
4	0.263	0.482	0.255	Rocco_S21_mac.txt
5	0.238	0.364	0.399	Rocco_S22_mac.txt
6	1	0	0	Rocco_CBZ_III_nomac.txt
7	0	1	0	Rocco_SAC_pura_nomac.txt
8	0	0	1	Rocco_CBZSAC_90511_n.txt

Measurements

XRPD

FT-IR

Variable

Step 2: Pre-processing

 $\rightarrow \hat{v}(i)$

- Enhances the performances of multivariate techniques
- Depends on the type of data
- Produces rescaled profiles from original ones: y(i)

Filtering

Backgroud subtraction

Enhances: - the signal in each profile

- differences among profiles

$$y'(i) = y(i) - b(i)$$

 \wedge \sim

^ • / •

^{^a Background}

Can be estimated by:

Sensitive Nonlinear Iterative Peak (SNIP) clipping algorithm

$$\hat{y}_1(i) = \hat{y}(i)$$

$$\hat{y}_{2}(i) = Min \left[\hat{y}_{1}(i), \frac{\hat{y}_{1}(i+2) + \hat{y}_{1}(i-2)}{2} \right]$$

$$\hat{y}_{p}(i) = Min \left[\hat{y}_{p-1}(i), \frac{\hat{y}_{p-1}(i+p) + \hat{y}_{p-1}(i-p)}{2} \right]$$

Nclip: width of clipping window & number of iterations

Pre-processing on XRPD

$$\hat{y}(i) = \frac{y(i)}{\sum_{j=1}^{N} y(j)}$$

Pre-processing on FTIR

FTIR, SNV

same spectrum with different amount of KBr pellet

Step 3: Task

Qualitative analysis

8 🛛 🗉 RootProf GUI	
RootProf Input PreProces	sing Task Output Run
WhichAnalysis	More Options
⊢ırstSight	Qualitative
Qualitative & Clustering Quantitative	Quantitative
Covariance Only Clustering	Quantitative
Size	
Crystallinity	Covariance
Generation of profiles	
	Only Clustering
	Size
	Crystallinity
	Generation of profiles

🛛 🖨 🔲 Qualitativ	e Analysis
PCA	 Biplot Equalpca MED analysis
WriteScores	WriteLoadings
Correlation — — — — — — — — — — — — — — — — — — —	Kolmog
Clustering ClusterSwitch	ClusterMethod Group average
Sogdiff	Myclust

Qualitative analysis by PCA

XRPD

Quantitative analysis

🛚 🖨 🖨 RootProf GUI	
RootProf Input PreProces	sing Task Output Run
WhichAnalysis	More Options
⊢irstSight	Qualitative
Qualitative & Clustering Quantitative Covariance Only Clustering	Quantitative
Size Crystallinity	Covariance
Generation of profiles	Only Clustering
	Size
	Crystallinity
	Generation of profiles

Quantitative	analysis
Unfold MultiFit Unfolding MultiFit + Unfolding Purephases	Constraint 🖸 Varbin
Get purephase f	ile(s)
Calib Calib No calibration Full calibration PreProcessing Rhoin, test, referw	▲ ▼
Method of Standard Addicti	on

The MultiFit approach

Fit model:

$$f(i) = \sum_{j=1}^{M} p_j \hat{f}_j(i)$$

 $\hat{f}_{j}(i)$ Pre-processed spectrum of j-th pure phase

M= number of pure phases in the sample

 $Sum = \sum_{t=1}^{M} p_{t}$ Deviation from 1 indicates phases not included in the fit or amorphous content

MultiFit

XRPD

FTIR

Experimental (pre-processed) pattern

Calculated (best fitted) profile f(x)

MultiFit vs Rietveld

- Can be applied to profiles from any technique
- Can be applied if pure-phases profiles are measured
- A priori information of mixture composition not strictly necessary

Specific for XRPD

 Can be applied if pure-phases crystal structures are known

 A priori information of mixture composition needed

free parameter

$$Sum = \sum_{t=1}^{M} w_t$$

set to 1

PCA filtering

Profiles reconstructed by using 3 PCs is Effect on quantitative analysis

- The dimensionality reduction minimize the experimental error
- Main features of the original spectra preserved

Experimental (pre-processed) pattern

Calculated (best fitted) profile f(x)

Quantitative analysis by unfolding

 $\hat{f}_{j}(i)$

MultiFit

Iterative LSQ

Pre-processed profile of the j-th pure phase

M= number of pure phases in the sample

N= number of 2theta values

 $\hat{f}_{j}(i)$ Response matrix formed by the pure phase profiles,

Iterative Gold deconvolution

Less accurate, but faster and less dependent on pre-processing

Unfolding vs Multifit

04

0.6

3 0.8 1 Reference weight fraction

> AKLD=0.121 Time=0.4 s

AKLD=0.110 Time=54.4 s

Kullback-Leibler distance

Supervised quantitative analysis

Subset of samples, with known weight fractions, used for calibration Automatic choice of best pre-processing option

Table 1: Pre-processing values considered for automatic calibration						
Pre-Processing type	0	1	2	3	4	5
Level 1: Modifications	no-modification	Smoothing	Deconvolution	Log10	Powering by 0.8	Powering by 1.2
Level 2: Rescaling	No-rescaling	Mean centering	Normalization	Standard Normal Variate		
Level 3: Bakground subtraction	No-background subtraction	Clipping window=16	Clipping window=20	Clipping window=40	Clipping window=60	Clipping window= 100
Level 4: Filtering	No-filtering	Multiplicative Scatter Correction	Multiplicative Scatter Correction, all profiles	Principal component filtering	Principal component filtering, all profiles	

Best-fit determination of pure phase rescaling

Table 1: Results of the calibration procedure by using different compositions of the calibration set.

Samples in	Calibration	Overall
Calibration Set	Parameters	AKLD
	1.00, 1.00, 1.00	0.108
0,1,2	1.00, 0.88, 0.98	0.104
3,4,5	1.00, 1.02, 1.16	0.094
0,1,2,3,4,5	1.00, 0.93, 1.05	0.097
6,7,8	1.00, 1.00, 1.00	0.108
0,1,2,6,7,8	1.00, 0.87, 0.97	0.104
3,4,5,6,7,8	1.00, 1.02, 1.16	0.094
0,1,2,3,4,5,6,7,8	1.00, 0.93, 1.05	0.097

Step 3: Task

Covariance analysis

800 **Covariance analysis** Corrmatrix Rowsel Covariance matrix 0 🜲 0 🜲 Correlation matrix DataType2 Colsel 0 🜲 0 🜲 -General Skiplines2 Range2 0 🜲 Ranges of variable File2 Get input file(s) Preprocess2 Level 1 Level 2 Modification -Rescaling None None ۰ ۰ Mean centering (MC) Smoothing \equiv Deconvolution Normalization (NORM) Standard Normal Variate (SNV) Log10 SNV on background Powering 0.8 Ŧ Level 3 Level 4 Filtering Background subtraction None Nclip. Multiplicative Scatter Correction (MSC) 0 🜲 MSC on all profiles Principal Component Filtering (PCF) PCF on all profiles

Covariance analysis

Covariance matrix interpretation

Crystal phase	XRPD signal (2θ)	FTIR signal (cm ⁻¹)	Correlation
CBZ-SAC	14.0	3460	Positive
		3500	Negative
SAC	16.0, 19.5	3460	Positive
		3500	Positive
CBZ III	13.2, 15.5	3460	Negative
		3500	Positive

3460 and 3500 cm⁻¹ FTIR peaks very sensitive for discrimination of CBZ III, SAC and CBZ-SAC

Step 4: Output & Step 5: Run

				-/-
RootProf Inpu	It PreProcessing	Task	Output	Ru
	Command file	editor		
I				
I				_
_	Use another comma	nd file		
	Run RootProf	F		

Round-robin mixtures

Polymorphism of glycine

Classification of XRPD patterns

Mahalanobis distance

$$dist = \sqrt{\left(\mathbf{u}_{j} - \mathbf{u}_{i}\right)^{T} COV\left(\mathbf{u}_{j} - \mathbf{u}_{i}\right)}$$

u_i=sample mean of group i

95% confidence ellipses and P-values

P-value = 5.2 \times 10^{-10}

Characterization of zucchini fruits

Biochar added to soil: 0% (B0), 2% (B2), 4% (B4), 8% (B8)

Mychorrhizial product addition: B0M, B2M

PCA analysis of fruits

PC1: relative abundance of crystalline cellulose
PC2: relative abundance of amylose (15.5°)

Structural characterization of halide perovskites

Temperature varied in situ $300 \rightarrow 400 \rightarrow 300$ ° C Tetragonal-to-cubic phase transition monitored

R. Caliandro, D. Altamura, B.D. Belviso, A. Rizzo, S. Masi, C. Giannini J. Appl. Cryst. 2019, 52

MAPbI₃ and PbI₂-MAI-DMSO peaks anticorrelated

Trends in time and space domains

Fitting of individual profiles

T=330 K

13E

12Ē

T=330 K

Automatic fitting of individual PDF profiles

Dynamic investigations: illumination variations

Energy Letters 2018, 3 1840–1847

Light-Induced Formation of Pb³⁺ Paramagnetic Species in Lead Halide Perovskites

Silvia Colella,^{†,‡}[®] Michela Todaro,[#] Sofia Masi,^{†,‡} Andrea Listorti,^{†,‡}[®] Davide Altamura,^{||} Rocco Caliandro,^{*,||}[®] Cinzia Giannini,^{||} Elisa Carignani,[§] Marco Geppi,[§] Daniele Meggiolaro,^{¶,∇} Gianpiero Buscarino,^{*,#®} Filippo De Angelis,^{*,¶,∇®} and Aurora Rizzo^{‡®}

Reversible generation, under illumination, of electron paramagnetic resonance signal from MAPbI₃ perovskite polycrystalline powder

Sample illuminated Light on for 90 min (profiles 1-44) Light off for 90 min (profiles 45-90)

Space-dependent PCA

PC1: structural variations induced by the X-ray illumination (lattice distortion, thermal atomic fluctuations...)

PC2: light-related trend, similar to that observed for the EPR signal

Higher light-induced effect for the shorter interatomic distances (R<3 Å), consistent with the range of Pb-O distances (2.25 Å)

References

- Caliandro et al. Investigating temperature-induced structural changes of lead halide perovskites by in situ X-ray powder diffraction (2019) J. Appl. Cryst. 52
- Guccione et al. Improved multivariate analysis for fast and selective monitoring of structural dynamics by in situ X-ray powder diffraction (2018) *Phys. Chem. Chem. Phys* 20
- Guccione et al. Principal component analysis for automatic extraction of solid-state kinetics from combined in situ experiments (2018) Phys. Chem. Chem. Phys 29
- Palin et al. Rational design of the solid-state synthesis of materials based on polyaromatic molecular complexes (2016) CrystEngComm 31
- Palin et al. Chemical selectivity in structure determination by time dependent analysis of in situ XRPD data: a clear view of Xe thermal behavior insdie a MFI zeolite (2015) *Phys. Chem. Chem. Phys.* 26
- Caliandro et al. Multivariate analysis of quaternary carbamazepine–saccharin mixtures by X-ray diffraction and infrared spectroscopy (2013) J. Pharm. Biom. Anal. 78–79
- Rizzuti et al. A combined approach for characterisation of fresh and brined vine leaves by X-ray powder diffraction, NMR spectroscopy and direct infusion high resolution mass spectrometry (2013) *Food Chemistry* 141