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Motivation /1 

Multivariate Analysis is a powerful and well-established set of 
methods (regression, clustering, classification, dimensionality 
reduction, density estimation, …) for retrieving information from 
large datasets and combining data from different sources. It 
consists in a statistical, mathematical and graphical set of 
techniques that consider multiple variables simultaneously. 

 

 

 

 

 

 

 

Chemometrics has born while applying these methods to 
Chemistry and it has the aim of extracting information from 
chemical systems by data-driven means.  
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Motivation /2 

Usual methods for such analysis are well supported in calculus 

software environment such as Matlab® . 

Recent software, more specific for Powder Diffraction Data (PDD) as 

Rootprof, are starting to develop such tools. 

The purpose of the talk is to provide: 

(i) Some view and basis of the methods; 

(ii) Some study case faced with multivariate analysis and supported 

(now and in future) by RootProf. 
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http://www.ba.ic.cnr.it/softwareic/rootprof/ 



Summary 
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 Introduction to the dimensionality problem: meaning and need of 

reduction 

 

 Principal Component Analysis: meaning and related tools 

 Extension of PCA and relaxation of orthogonality: OCCR. 

 Case study: analysis of XRPD dataset 

 

 Kinetics of Solid-state reaction: optimized-PCA analysis. 

 Case study: evaluation of kinetics triplet from XRPD 



Thinking at many dimensions 
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Powder Diffraction Data are a set of spectra acquired with slight different 

conditions along time. 

Change of structural crystalline characteristics (occupancy, lattice, etc) 

provides different spectra. 

 

Retrieve the “basic components” of such spectra and the “causes of 

modification” with little or null information about the dataset is the aim of 

such multidimensional analysis. 

Dimensions! 

(>> samples) 
Samples 



The high dimensionality problem 
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More variables than observations (Hughes phenomenon): 

When the number of variables is too high compared to the number of the 

samples, the analysis algorithm is unable to find a proper structure within 

data that can be generalized to other dataset of the same experiment. 

 

This is known as the curse of dimensionality or Hughes phenomenon. 

It may commonly occur in PDD: diffraction angles may be thousands, as 

well, compared to few dozens of measured spectra 

Visual example: 

Overfitting in classification 
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 The problem of high dimensionality involves also the estimation of parameters in 

hidden models (e.g.: the number of coefficient in a regression problem) or of latent 

variables (e.g.: number of mixtures in a density estimation problem). 
 

 

 

 

 

 

 

 

 

 

 The problem of dimensionality depends on both the data and the algorithm. 

Possible solutions are: trying to change algorithm or trying to reduce the 

dimensionality of the problem 

Overfitting in regression 

Dimensionality reduction 



Dimensionality Reduction: the PCA 
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Principal Component Analysis is a standard technique for visualizing high 

dimensional data and for data pre-processing. PCA may reduce the 

dimensionality (the number of variables) of a data set by maintaining as much 

variance (i.e. energy) as possible. 

PCA: 

 finds the directions of maximum variation of the data 

 decorrelates the original variables by using orthogonal transformation 

 The set of uncorrelated variables are said principal components 

Retain all the dimensions Reduce the dimensions 



PCA: mathematical details 
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Principal Component Analysis is an orthogonal linear transformation that 

transforms the data to a new coordinate system such that the greatest variance lies 

on the first coordinate, the second greatest on the second coordinate, and so on. 

 

Organize data in a matrix, X [N x P], N samples (repetition of the experiment), P 

variates (the features of the experiment). The full principal components 

decomposition of X can be given as: 

  

X TW'

 The principal components T (called scores) are achieved as linear combination 

of data and a set of weights (called loadings) 

 

 The (column) weights W (that are the loadings) are the eigenvectors of the 

sample covariance matrix of data 

•3455021192 •3455021192 



PCA: meaning 
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PCA: dimensionality reduction 
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Not all the principal components are equally important. Their relative 

importance is given by the explained variance. A typical plot of the variance is given 

by: 
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We want 99% of variance explained → nc=6 components are enough 
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Modulated Enhanced Diffraction XPD data 
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PCA applied to XRPD MED data 
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Optimum Constrained Component 

Extension: component rotation 
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OCCR 

Orthogonal Constrainted Component Rotation 

In order to supply to futher condition in the problem, components may be changed 

and no longer constrained to be orthogonal each other (they may be partially 

correlated), so to allow the constraints to be applied. 

 

The score axes change their directions, by exploring the k-dimensional space 

(already reduced to the principal components) driven by a properly defined cost 

function.  

The idea is that we are able to detect the optimal rotated axes of a low-

dimensional space (where data still have a meaningful representation) by 

minimizing an objective function 
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2θ2 
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PCA/OCCR decomposition 

ρ = 0.0687 

(in PCA ρ = 0) 

OCCR: PC2=PC1
2 Imposed 

(in PCA dictated by data) 

Visual scheme 



Results on Simulations 
System response Acronym PCA OCCR PSD* 

Sinusoidal [0 0.4] SI 0.940 1.000 1.000 

Triangular [0.8 1]  TR 0.478 1.000 1.000 

Square, slow decay [0 1] SQ 0.695 1.000 1.000 

Square, fast decay [0 1] SQ_fast 0.704 1.000 0.860 

Square, asymmetric decay 

[0 1] 

SQ_asym 0.684 1.000 0.316 

Sinusoidal [0.8 1] -- 0.521 1.000 1.000 

Ramp [0.8 1] -- 0.609 1.000 0.788 

Ramp [0 1] -- 0.919 1.000 0.215 

SI

TR

SQ
SQ_fast

SQ_asym

SI 

The occupancy of the Cu atom is varied according to various 

functions. Correlation coefficient between the calculated 

XRD profile of the Cu atom and those obtained by PCA or 

OCCR decomposition, or by Phase Sensitive Detection 

demodulation (a traditional method). The intervals spanned 

by the occupancy values are in brackets 

Correlation coefficient  



Case study 

Modulated Enhanced Diffraction  

XPD data 



Problem 
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A set of X-Ray Powder Diffraction data (XRPD), have been simulated by 

applying on the sample a known stimulus profile along time. 

We want to retrieve, separately, the crystalline phases and the trend in time 

of the phases evolution. No prior knowledge of the model is supposed, 

although the data may behave accordingly to two models: 

 

 Case 1: Two crystalline phases, without active atom [CuFe2O4+Cu] 

 Case 2: A single crystalline phase [CuFe2O4] and one active atom species [Cu] 



Recall PCA contribution 
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It has been already observed that Principal Component Analysis is able 

to separate the contributions forming the dataset supposing the different 

components uncorrelated. 

In detail,  

PCA scores explain the time trend of the crystalline phases,  

PCA loadings express the pure spectra, if uncorrelation among 

components is a reasonable hypothesis. 

 

If the crystalline model is simple, the components are expected to be well 

separated and PCA working well. 



Case 1: Mathematical Model 
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The specific case study analyzed in simulation concerns: 

CuFe2O4+Cu, a case in which there are two crystalline phases and no active 

atoms. 

The mathematical model underlying the change of spectra evolution with time is 

the following: 

 

 

 

 

 

where X(2ϑ,t) are the data, F1(2ϑ) the first phase and F2(2ϑ) the second crystalline 

phase. 

The two phases have been simulated so that at any time they complement each 

other, i.e.  

2 2
1 2(2 , ) ( ) (2 ) ( ) (2 )

( ) 1 ( )

X t m t F n t F

n t m t

     

 

( ) ( ) 1n t m t 

Dataset name: 1_frazioni_in_peso_CuFe2O4_scala_lineare 



Conditions 
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2 2 2
1 2 2(2 , ) ( ) (2 ) (2 ) (2 )X t m t F F F       

  

In PCA: PC1: it should follow the external stimulus 

In PCA: loading1: it should have positive (related to |F1|
2) and negative (related to |F2|

2) parts 

To analyze the results, the figures of merit used have been: 

 

 Correlation between the linear stimulus with PC1 [only the knowledge of stimulus is 

supposed]. 

 Correlation of positive part of loading 1 with pure reference spectrum 

 Correlation of negative part of loading 1 with pure reference spectrum 

[although in practical situation the pure spectra are not known]. 

 



Correlation Results 
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Method FoM type FoM description Value 

 

 

PCA 

INTRINSIC Correlation coefficient of the first stimulus with PC1 -1.0000 

 

EXTERNAL 

Correlation coefficient of loading 1+ with CuFe2O4 0.9998 

Correlation coefficient of loading 1- with Cu 0.9999 



CuFe2O4 

Cu 



Case 2: Mathematical Model 
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The specific case study analyzed in simulation concerns a single crystalline phase 

with one active atom (Cu) species, the CuFe2O4+Cu. 

 

The mathematical model underlying the change of spectra evolution with time is the 

following: 

 

 

 

 

 

where X(2ϑ,t) are the data, Fa(2ϑ) is the spectrum of the active atoms (i.e. the ones 

responding to the external stimulus) and Fs(2ϑ) the spectrum of the silent atoms. 

It is expected that the behavior of the trend in the active atom is somewhat related 

to the external stimulus but in general it is unknown. 

 

In the simulation of Case 2, the external stimulus is linear. 

2

2 22

(2 , ) ( ) (2 ) (2 )

( ) (2 ) 2 ( ) (2 ) (2 ) cos (2 )

a s

a a s s

X t m t F F

m t F m t F F F
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    

  
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( ) , ,0...,
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m iT i N
N

 

Dataset name: 2_atomo_Cu_spinello_step_001_scale_ok_Cu_occ_0.87_scala 



Conditions 
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In PCA: PC1: it should follow the external stimulus 

In PCA: loading1: it should have positive and negative parts 

2 22(2 , ) ( ) (2 ) 2 ( ) (2 ) (2 ) cos (2 )a a s sX t m t F m t F F F          

In PCA: PC2: it should follow the square of the external stimulus 

In PCA: loading2: it should be only positive 

To analyze the results, the figures of merit used have been: 

 

 Correlation between the linear stimulus with PC1; quadratic with PC2; positivity of 

loading 2 [only the knowledge of stimulus is supposed]. 

 Correlation of loading 2 with pure reference spectrum of active atoms 

[although in practical situation the pure spectra are not known]. 

 



Correlation Results 
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FoM type FoM description PCA OCCR 

load2 

OCCR 

corr coef 

OCCR 

comb 

 

 

 

INTRINSIC 

Positivity degree of loading 2 1.0000 1.0000 1.0000 1.0000 

Correlation coefficient of PC2 with PC12 0.9998 0.9998 1.0000 0.9998 

Correlation coefficient of PC1 with m(t) -1.0000 -1.0000 -1.0000 -1.0000 

Correlation coefficient of PC2 with m(t)2 1.0000 1.0000 1.0000 1.0000 

INTRINSIC Geometric mean of the previous 

figures 

1.0000 1.0000 1.0000 1.0000 

EXTERNAL Correlation coefficient of loading 2 with 

CuFe2O4-OnlyCu 

0.9978 0.9978 1.0000 0.9978 

Different running conditions for OCCR (i.e. different optimality criterion applied): 

Load2: highest positivity of second loading 

Corrcoef: highest correlation coefficient of PC1
2 and PC2 

Combined: geometric mean of the previous figures. 

PERFECT! 



CuFe2O4 only Cu 



Case study: 

Kinetics of Solid-state reaction 
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X-ray Diffraction profiles during 2 solid 

phases changes 

General purpose of the study: 

 Analysis of a two solid state transformation and estimation of the 

kinetic triplet parameters. 

 The kinetic has been investigated through X-ray Powder Diffraction 

method, collecting a set of spectra as a function of temperature (in case 

of non-isothermal experiment) or as a function of time (in case of iso-

thermal experiment). 

 The general idea is that the spectra may capture information about the 

kinetic of transformation and then that it is possible to infer equation 

parameters observing the transformation of the spectra with time or 

temperature. 
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Solid-state transformation basis /1 

Solids transformation from one crystalline phase (state of matter) into another has 

been observed. 

Said α the extent of conversion, the following dynamic equation holds: 

 

 

 

where K(T) is a temperature-dependent reaction rate and f(α) a kinetic-dependent 

model function.  

 

The Arrhenius equation links explicitly K to temperature: 

 

 

 

with Ea the activation energy of the reaction, R the universal gas constant and T 

the temperature (A is called frequency factor and it is an unknown, together with 

Ea). 

( ) ( )
d

K T f
dt


 

( ) exp aE
K T A

RT

 
   

 



Solid-state transformation basis /2 

The triplet {A,Ea,f(α)} is called kinetic triplet and characterizes a unique 

decomposition reaction.  

Some models for f(α) are reported in literature and, highlighted in green, the ones 

used in the experiments of our interest. 

Z.A. Alothman, R. Mahfouz, 'Kinetic Studies of the Non-Isothermal Decomposition of Unirradiated and gamma-Irradiated Gallium 

Acetylacetonate', Progress in Reaction Kinetics and Mechanism - May 2010 



Optimization: general strategy 

XPD data have been taken during transformation between two phases with the 

purpose of estimate the kinetic parameters: 

 

 

 

Principal Component Analysis has been used on the dataset. In detail, the first score 

has been supposed to follow the general trend of the implied transformation 

 

 

The idea is to relate the first score with the explicit expression of α derived from the 

models, which is function of the three unknowns {A,Ea,n}. 

For a given set of the triplet, it is possible to infer the expression of α, that is used to 

force the decomposition so that α is just the first score. 

 

 

 

 , ,aA E n

1t 

0( )
1 exp exp

n

aT T nE
A

RT




     
        

    

KC model 

21 exp exp

n

n aE
T A

RT


   
       

    

CR model 



Diffractograms: Naphtalene dataset 

PCA 

Constr PCA 

Comparison with Rietveld 

refinement method (based on 

least square approach, H. M. 

Rietveld, J. Appl. Crystallogr., 1969, 2, 65) 

that is more computationally 

intensive is in red) 

fluorene (FL), naphthalene (NA) and anthracene (AN) as donor moieties 

and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as an acceptor moiety 



Diffractograms: Fluorene dataset 

PCA 

Constr PCA 



Diffractograms: Anthracene dataset 

PCA 

Constr PCA 
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Discussion & Conclusions 

Multivariate Analysis performs decomposition of pure spectrum and stimulus in 

Modulated Enhanced Diffraction of X-Ray Powder Diffracted Data. It has been 

used also to infer the kinetic reaction parameters 

Novelty w.r.t. traditional methods: 

 No need to know the underlined model, at least in principle, 

 Very accurate decomposition for simple models, good accuracy for more 

complicated models, 

 Fast and completely automated method. In RootProf PCA is implemented; 

OCCR and constrained-PCA (for triplet estim.) in future versions 

Limits: 

 Some problem with the sign of the loadings (positive/negative) 

 Decomposition supposes uncorrelated spectrum, which is not exactly the truth 

 First score could not contain all the ‘trend’ of the dataset.  


