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Motivation /1

Multivariate Analysis is a powerful and well-established set of
methods (regression, clustering, classification, dimensionality
reduction, density estimation, ...) for retrieving information from
large datasets and combining data from different sources. It
consists in a statistical, mathematical and graphical set of
techniques that consider multiple variables simultaneously.
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Chemometrics has born while applying these methods to
Chemistry and it has the aim of extracting information from
chemical systems by data-driven means.
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Motivation /2

Usual methods for such analysis are well supported in calculus
software environment such as Matlab® .

Recent software, more specific for Powder Diffraction Data (PDD) as
Rootprof, are starting to develop such tools.

The purpose of the talk is to provide:
() Some view and basis of the methods;

(i) Some study case faced with multivariate analysis and supported
(now and in future) by RootProf.

DROOT

Data Analysis Framework

. : . o3
http://www.ba.ic.cnr.it/softwareic/rootprof/



Summary

» Introduction to the dimensionality problem: meaning and need of
reduction

» Principal Component Analysis: meaning and related tools
» Extension of PCA and relaxation of orthogonality: OCCR.
» Case study: analysis of XRPD dataset

» Kinetics of Solid-state reaction: optimized-PCA analysis.
» Case study: evaluation of kinetics triplet from XRPD



Thinking at many dimensions

Powder Diffraction Data are a set of spectra acquired with slight different
conditions along time.

Change of structural crystalline characteristics (occupancy, lattice, etc)
provides different spectra.

Retrieve the “basic components” of such spectra and the “causes of
modification” with little or null information about the dataset is the aim of
such multidimensional analysis.
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The high dimensionality problem

More variables than observations (Hughes phenomenon):

When the number of variables is too high compared to the number of the
samples, the analysis algorithm is unable to find a proper structure within
data that can be generalized to other dataset of the same experiment.

This is known as the curse of dimensionality or Hughes phenomenon.
It may commonly occur in PDD: diffraction angles may be thousands, as
well, compared to few dozens of measured spectra

Visual example:

& ‘ 5 Overfitting in classification
»]I()(.I.‘) == _(](0(] + 0].1.‘1 + 02.1’2) (1(9() + 01.1,'1 + 02_172 _(]((')() ‘*" (‘)|‘1'| -+ (‘)21'1'
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i +05x122) +0sx2x3 + Ogxize + . ..
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Dimensionality reduction

» The problem of high dimensionality involves also the estimation of parameters in
hidden models (e.g.: the number of coefficient in a regression problem) or of latent
variables (e.g.: number of mixtures in a density estimation problem).

Price
Price
Price

i Overfitting in regression
Size Size Size
9() —+ 91.1‘ ()() + 61z + (}2;1'2 Oy + 61 + ()3.1‘2 -+ 9;;‘1'3 1 91‘1‘4
High bias “Just right” High variance
(underfit) (overfit)

» The problem of dimensionality depends on both the data and the algorithm.

Possible solutions are: trying to change algorithm or trying to reduce the
dimensionality of the problem
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component space
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Dimensionality Reduction: the PCA

Principal Component Analysis is a standard technique for visualizing high
dimensional data and for data pre-processing. PCA may reduce the
dimensionality (the number of variables) of a data set by maintaining as much
variance (i.e. energy) as possible.

PCA:

» finds the directions of maximum variation of the data

» decorrelates the original variables by using orthogonal transformation

» The set of uncorrelated variables are said principal components

n——

Retain all the dimensions Reduce the dimensions
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PCA: mathematical details

Principal Component Analysis is an orthogonal linear transformation that
transforms the data to a new coordinate system such that the greatest variance lies
on the first coordinate, the second greatest on the second coordinate, and so on.

Organize data in a matrix, X [N x P], N samples (repetition of the experiment), P
variates (the features of the experiment). The full principal components
decomposition of X can be given as:

X=TW
» The principal components T (called scores) are achieved as linear combination

of data and a set of weights (called loadings)

» The (column) weights W (that are the loadings) are the eigenvectors of the
sample covariance matrix of data



PCA: meaning

In PCA data are decomposed by projecting in a new space of
the same dimension.
Samples are described in a multi-dimensional space.
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PCA: dimensionality reduction

Not all the principal components are equally important. Their relative
importance is given by the explained variance. A typical plot of the variance is given
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Modulated Enhanced Diffraction XPD data

External periodic stimulus
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PCA applied to XRPD MED data

Loadings

the weight by which each original
variable should be multiplied to get

the component score
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Extension: component rotation

OCCR

Orthogonal Constrainted Component Rotation

In order to supply to futher condition in the problem, components may be changed
and no longer constrained to be orthogonal each other (they may be partially
correlated), so to allow the constraints to be applied.

The score axes change their directions, by exploring the k-dimensional space
(already reduced to the principal components) driven by a properly defined cost
function.

The idea is that we are able to detect the optimal rotated axes of a low-
dimensional space (where data still have a meaningful representation) by
minimizing an objective function | 265




PCA/OCCR decomposition

Visual scheme
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| System response [ Acronym __|Pca___| | Psp*
|
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Triangular [0.8 1]

Square, slow decay [0 1]

Square, fast decay [0 1]

Square, asymmetric decay
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Sinusoidal [0.8 1]
Ramp [0.8 1]
Ramp [0 1]

The occupancy of the Cu atom is varied according to various

Results on Simulations
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functions. Correlation coefficient between the calculated
XRD profile of the Cu atom and those obtained by PCA or
OCCR decomposition, or by Phase Sensitive Detection

demodulation (a traditional method). The intervals spanned

by the occupancy values are in brackets
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Case study
Modulated Enhanced Diffraction
XPD data



Problem

A set of X-Ray Powder Diffraction data (XRPD), have been simulated by
applying on the sample a known stimulus profile along time.

We want to retrieve, separately, the crystalline phases and the trend in time
of the phases evolution. No prior knowledge of the model is supposed,

although the data may behave accordingly to two models:

» Case 1: Two crystalline phases, without active atom [CuFe,O,+Cu]

» Case 2: Asingle crystalline phase [CuFe,O,] and one active atom species [Cu]

° e18



Recall PCA contribution

It has been already observed that Principal Component Analysis is able
to separate the contributions forming the dataset supposing the different
components uncorrelated.

In detaill,

PCA scores explain the time trend of the crystalline phases,

PCA loadings express the pure spectra, if uncorrelation among

components is a reasonable hypothesis.

If the crystalline model is simple, the components are expected to be well

separated and PCA working well.



Case 1: Mathematical Model

The specific case study analyzed in simulation concerns:
CuFe,0,+Cu, a case in which there are two crystalline phases and no active
atoms.

The mathematical model underlying the change of spectra evolution with time is
the following:

2 2
X (29,t) =m(t) - |F(29)|” + n(t) - |F, (29|
n(t) =1-m(t)
where X(29,t) are the data, F,(29) the first phase and F,(29) the second crystalline

phase.

The two phases have been simulated so that at any time they complement each
other, i.e.

n(t) + m(t) =1

® Dataset name: 1_frazioni_in_peso CuFe204 scala_lineare ®20



Conditions

X (29,t) = m(t) -[||:1(2l9)|2 —|F2(29)|2} +|F(29)

In PCA: PC1: it should follow the external stimulus

In PCA: loadingl: it should have positive (related to |F,|?) and negative (related to |F,|?) parts

To analyze the results, the figures of merit used have been:

» Correlation between the linear stimulus with PC1 [only the knowledge of stimulus is
supposed].

» Correlation of positive part of loading 1 with pure reference spectrum

» Correlation of negative part of loading 1 with pure reference spectrum

[although in practical situation the pure spectra are not known].

o 02]



Correlation Results

FoM type FoM description

PCA

INTRINSIC

EXTERNAL

Correlation coefficient of the first stimulus with PC1
Correlation coefficient of loading 1+ with CuFe204

Correlation coefficient of loading 1- with Cu

-1.0000
0.9998
0.9999

02?2
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Case 2: Mathematical Model

The specific case study analyzed in simulation concerns a single crystalline phase
with one active atom (Cu) species, the CuFe,O,+Cu.

The mathematical model underlying the change of spectra evolution with time is the
following:

X (29,1) = (), (29) + Fs (29)| =
2 2 2
m=(t)-|Fa (29)|" +2m(t) - |F,(29)||Fs (29| - cos S + |Fs (29)|
where X(29,t) are the data, F,(29) is the spectrum of the active atoms (i.e. the ones
responding to the external stimulus) and F,(29) the spectrum of the silent atoms.

It is expected that the behavior of the trend in the active atom is somewhat related
to the external stimulus but in general it is unknown.

In the simulation of Case 2, the external stimulus is linear.

m(iT):ﬁ,i ~0...N

® 24
Dataset name: 2_atomo_Cu_spinello_step 001 scale ok Cu_occ 0.87 scala



Conditions

X (29,t) = m2(t)-|Fa | + 2m(t) - |Fa (29)||Fs (29)|-cos 6 + |Fs (29|

T_‘T I

In PCA: PC2: it should follow the square of the gxtgdrnal stimulus

In PCA: loading?2: it should be only positive —

In PCA: PC1: it should follow the external stimulus —

In PCA: loadingl: it should have positive and negative parts ——

To analyze the results, the figures of merit used have been:

» Correlation between the linear stimulus with PC1; quadratic with PC2; positivity of
loading 2 [only the knowledge of stimulus is supposed].

» Correlation of loading 2 with pure reference spectrum of active atoms

[although in practical situation the pure spectra are not known].

025



FoM type FoM description PCA OCCR OCCR OCCR
load?2 corr coef | comb

INTRINSIC

INTRINSIC

EXTERNAL

Correlation Results

Positivity degree of loading 2
Correlation coefficient of PC2 with PC12
Correlation coefficient of PC1 with m(t)

Correlation coefficient of PC2 with m(t)?

Geometric mean of the previous
figures

Correlation coefficient of loading 2 with
CuFe204-OnlyCu

1.0000
0.9998
-1.0000
1.0000

1.0000

0.9978

1.0000
0.9998
-1.0000
1.0000

1.0000

0.9978

1.0000
1.0000
-1.0000
1.0000

1.0000

1.0000

PERFECT!

1.0000
0.9998
-1.0000
1.0000

1.0000

0.9978

Different running conditions for OCCR (i.e. different optimality criterion applied):
Load?2: highest positivity of second loading

Corrcoef: highest correlation coefficient of PC;? and PC,

Combined: geometric mean of the previous figures.
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CuFe,O, only Cu
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Case study:

Kinetics of Solid-state reaction

28



X-ray Diffraction profiles during 2 solid
phases changes

General purpose of the study:

» Analysis of a two solid state transformation and estimation of the
Kinetic triplet parameters.

» The kinetic has been investigated through X-ray Powder Diffraction
method, collecting a set of spectra as a function of temperature (in case
of non-isothermal experiment) or as a function of time (in case of iso-
thermal experiment).

» The general idea is that the spectra may capture information about the
kinetic of transformation and then that it is possible to infer equation
parameters observing the transformation of the spectra with time or
temperature.

In situ experiment

\\\\\\\\\\\
11111111111

Prompt location of active atoms



Solid-state transformation basis /1

Solids transformation from one crystalline phase (state of matter) into another has
been observed.
Said a the extent of conversion, the following dynamic equation holds:

do
E=K(T)- f(a)

where K(T) is a temperature-dependent reaction rate and f(a) a kinetic-dependent
model function.

The Arrhenius equation links explicitly K to temperature:

K(T):A-exp(— Eaj

RT

with E_ the activation energy of the reaction, R the universal gas constant and T
the temperature (A is called frequency factor and it is an unknown, together with
E.).



Solid-state transformation basis /2

The triplet {A,E_,f(a)} is called kinetic triplet and characterizes a unique
decomposition reaction.

Some models for f(a) are reported in literature and, highlighted in green, the ones
used in the experiments of our interest.

No. Symbol Reaction model fx)
1 P, Power law Jo/4
2 P, Power law 3?3
3 P, Power law 2112
4 P, Power law 2312
5 R, Phase-boundary controlled reaction(conftracting area, 2(1 —a)'?
i.e. bidimensional shape) i
6 R, Phase-boundary controlled reaction(contracting volume, 31— 1}3’"’
i.e. tridimensional shape)
7 F, First-order (Mampel) (1 —a)
8 A, Avrami-Eroféev(n = 2) 2(1 — a)[— In(1 — a)]'/?
9 As Avrami-Eroféev(n = 3) 3(1 — a)[— In(1 — a))*"?
[0 D, OUne-dimensional diffusion /2
11 D, Two-dimensional diffusion (bidimentional particle shape) 1/[—=In(1 — 2)]
Valensi equation
12 Dy Three-dimensional diffusion (tridimentional particle shape) 31— 21 —a) P =1

Jander equation

Z.A. Alothman, R. Mahfouz, 'Kinetic Studies of the Non-Isothermal Decomposition of Unirradiated and gamma-Irradiated Gallium
Acetylacetonate', Progress in Reaction Kinetics and Mechanism - May 2010



Optimization: general strategy

XPD data have been taken during transformation between two phases with the
purpose of estimate the kinetic parameters:

{AE,,n}

Principal Component Analysis has been used on the dataset. In detall, the first score
has been supposed to follow the general trend of the implied transformation

t,ca

The idea is to relate the first score with the explicit expression of a derived from the
models, which is function of the three unknowns {A,E_,n}.

For a given set of the triplet, it is possible to infer the expression of a, that is used to
force the decomposition so that a is just the first score.

CR model KC model

. :1_exp|i_-|-2n [A-exp(— :_T_ ﬂ } a ﬂ—exp{—[(T ,—BTO) Aj .exp(— T:? ﬂ




Diffractograms: Naphtalene dataset
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Diffractograms: Fluorene dataset
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Diffractograms: Anthracene dataset
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Discussion & Conclusions

Multivariate Analysis performs decomposition of pure spectrum and stimulus in

Modulated Enhanced Diffraction of X-Ray Powder Diffracted Data. It has been

used also to infer the kinetic reaction parameters

Novelty w.r.t. traditional methods:

» No need to know the underlined model, at least in principle,

> Very accurate decomposition for simple models, good accuracy for more
complicated models,

» Fast and completely automated method. In RootProf PCA is implemented,;
OCCR and constrained-PCA (for triplet estim.) in future versions

Limits:

» Some problem with the sign of the loadings (positive/negative)

» Decomposition supposes uncorrelated spectrum, which is not exactly the truth

» First score could not contain all the ‘trend’ of the dataset.

° 36



