

EXPO&more International Workshop

Rietveld Refinement

The Rietveld Method

Based on the idea suggested in the middle 1960s by Rietveld

Aim of the method

All structural and instrumental parameters are refined by fitting a calculated profile to the observed data without extraction of the individual integrated intensities

- Nonlinear least squares method
- Requires a model of a crystal structure

Fundamentals of the Rietveld Method

The minimized function is given by:

$$\chi^{2} = \sum_{i=1}^{N} w_{i} [y_{i,obs} - y_{i,calc}]^{2}$$

 $y_{i,obs}$ is the observed intensity at the *i*th data point

 $y_{i,calc}$ is the calculated intensity at the *i*th data point

The weight is given by $w_i = rac{1}{y_{i,obs}}$

Peak-Shape Functions

The diffracted profile is expressed by the equation:

$$y_{i,calc} = b_i + S \sum_{k=1}^m I_k y_k(x_k)$$

 $y_{i,calc}$ is the total intensity calculated at the point *i*

k=1

- b_i is the background intensity
- S is the phase scale factor
- y_{ik} is the contribution from the *k*th individual Bragg peak
- I_k is the intensity of the *k*th Bragg reflection and the sum is extended over all *m* reflections contributing the intensity to point *i*

$$x_k = 2\theta_i - 2\theta_k$$

$$y_{i,calc} = b_i + S \sum_{k=1}^{m} I_k [y_k(x_k) + 0.5y_k(x_k + \Delta x_k)]$$

wavelength 1.54059 1.54443 0.5

Intensity

Fundamentals of the Rietveld Method

The intensity I_k is given by the expression:

$$I_k = M_k L_k |F_k|^2 P_k$$

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

 M_k is the multiplicity

 L_k is the Lorentz-polarisation factor

- F_k is the structure factor
- P_k is the preferred orientation

Fundamentals of the Rietveld Method

- Bari, Italy

October 2019)

e

Т

Workshop (30 September

EXPO&more International

Single phase crystalline material:

$$y_{i,calc} = b_i + S \sum_{k=1}^m I_k y_{ik}$$

Mixture of several N_p phases:

$$y_{i,calc} = b_i + \sum_{p=1}^{N_p} S_p \sum_{k=1}^m I_k^p y_{ik}^p$$

For mixture of several phases, the contribution from every crystalline phase is accounted in the expression of y_{ci} .

Quantitative analysis of a multiple phase crystalline material

Multiple phase powder diffraction patterns

<pre>%job Sample_ID_1e (Corundu 15.25%)</pre>	m 55.12%, Fluorite 29.62%, Zincite
<pre>%structure Sample_ID_1e</pre>	
<pre>%data pattern cpd-1e.dat wave 1.54056 1.54439 0.5</pre>	
<pre>%crystal Corundum-Al2O3.cif</pre>	Rietveld Refinement _ C ×
<pre>%crystal Fluorite-CaF2.cif</pre>	General Powder Data Corundum-Al2O3 Fluorite-CaF2 Zincite-ZnO
<pre>%crystal Zincite-ZnO.cif</pre>	Automatic Procedures Print Options Automatic refinement of profile Image: start/end cycle
%rietveld	Automatic refinement of structure correlation matrix LSQ matrix Number of Cycles: 3 - + CIF
	LSQ Options Number of Cycles: 30 - + Weighting Scheme: # 2: W=1.0/Count Criterium of Convergence: 4 - + Refine non-structural parameters with Le Bail method
J. Appl. Cryst. (2001). 34, 409-426	Info Rp = 37.335 Rwp = 45.840 Refine Quit BLP

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Fundamentals of the Rietveld Method

$$\chi^2 = \sum_{i=1}^{N} w_i [y_{i,obs} - y_{i,calc}]^2$$
$$y_{i,calc} = b_i + S \sum_{k=1}^{m} I_k y_{ik}$$

$$I_k = M_k L_k |F_k|^2 P_k$$

The Rietveld method is similar to the full pattern decomposition using:

- **Pawley algorithms**: the integrated intensities are treated as free least squares variables. We minimize χ^2 respect to $|F_k|$ (non linear least-squares) or $|F_k|^2$ (linear least-squares).
- Le Bail algorithms: the integrated intensities are determined iteratively after each refinement cycle

Mathematical procedure*

$$\chi^{2} = \sum_{i=1}^{N} w_{i} [y_{i,obs} - y_{i,calc}]^{2}$$

 $y_{i,calc}$ is a non linear function with respect to the unknown parameters, $x_1, x_2, ..., x_m$ and a system of equations can be assumed:

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

$$y_{1,calc} = M_1(x_1, x_2, ..., x_m)$$

$$y_{2,calc} = M_2(x_1, x_2, ..., x_m)$$

$$y_{N,calc} = M_N(x_1, x_2, ..., x_m)$$

In the matrix form:

$$\chi^2 = [\mathbf{y} - \mathbf{M}(\mathbf{x})]^T \mathbf{W} [\mathbf{y} - \mathbf{M}(\mathbf{x})]$$

* Chapter 3 of the monograph The Rietveld method, R.A. Young, Ed., Oxford University Press, Oxford, New York (1993)

Linear Least Squares

$$\chi^2 = [\mathbf{y} - \mathbf{M}(\mathbf{x})]^T \mathbf{W}[\mathbf{y} - \mathbf{M}(\mathbf{x})]$$

 ${f y}$ is the set of observable quantities $y_{1,obs},y_{2,obs},...,y_{N,obs}$ ${f W}$ is a diagonal matrix whose diagonal elements are $w_1,w_2,...,w_N$

If the model function is linear

$$\mathbf{M}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$

The set of parameters ${f x}$ that minimizes $~\chi^2$ is the solution of normal equations

$$\mathbf{J}^T \mathbf{W} \mathbf{J} \mathbf{x} = \mathbf{J}^T \mathbf{W} (\mathbf{y} - \mathbf{b})$$

J(x) is the Jacobian matrix
$$J(x)_{ij} = \frac{\partial M_i(x)}{\partial x_j}$$
 $1 < i < N$
 $1 < j < m$

Example of linear least squares: background in a polynomial approximation, phase scale, are linear, $|F_{\mu}|^2$ in the Pawley full pattern decomposition

Nonlinear Least Squares

October 2019) - Bari, Italy

e

EXPO&more International Workshop (30 September -

Expanding the model function M(x) around the starting point x_0 in Taylor's series and retaining only the linear terms we obtain the equation:

$$M(x) \approx M(x_0) + J(x_0)(x - x_0)$$

Gauss Newton algorithm for each *k* iteration

(1) Compute the search direction d as the solution of the linear system $\mathbf{J}^T \mathbf{W} \mathbf{J} \mathbf{d} = \mathbf{J}^T \mathbf{W} [\mathbf{y} - \mathbf{M}(\mathbf{x})]$ (2) Set $\mathbf{x}_k = \mathbf{x}_{k-1} + \mathbf{d}$

(3) If not converged go to (1), else stop.

Gauss-Newton-Type Methods

Gauss-Newton method with a line search

Set $\mathbf{x}_{k-1} = \mathbf{x}_k + \alpha \mathbf{d}$

where called step length, is such that the algorithm is in descendant condition:

Workshop (30 September – 3 October 2019) - Bari, Italy

EXPO&more International

$$\chi^2(\mathbf{x}_k + \alpha \mathbf{d}) < \chi^2(\mathbf{x}_k)$$

is chosen by a line-search procedure

Levenberg–Marquardt algorithm modify the normal equations in

$$(\mathbf{J}^T \mathbf{W} \mathbf{J} + \lambda \mathbf{I}) \mathbf{d} = \mathbf{J}^T \mathbf{W} [\mathbf{y} - \mathbf{M}(\mathbf{x})]$$

where I is the identity matrix, λ is a damping factor

Standard deviations

Variance-covariance matrix: $\mathbf{V}_x = (\mathbf{J}^T \mathbf{W} \mathbf{J})^{-1}$

$$\sigma(x_j) = \sqrt{\frac{(V_x)_{jj}\chi^2}{n-m}}$$

n is the number of observations

m is the number of unknown parameters

 $(V_x)_{jj}$ is the corresponding diagonal element of the variance-covariance matrix

General Powder Data cime	
Automatic Procedures Print Options Automatic refinement of profile If start/end cycle Automatic refinement of structure If conclusion matrix Number of Cycles: 3	
LSQ Options Number of Cycles: 30 - + Weighting Scheme: # 2 : W=1.0/Count Criterium of Convergence: 4 - +	
Refine non-structural parameters with Le Bail method	
Info Rp = 31.854 Rwp = 43.076	
🗞 Refine 🛃 Quit	

Classes of Rietveld Refinement Parameters

$$\chi^2 = \sum_{i=1}^{N} w_i (y_{i,obs} - [b_i + S \sum_{k=1}^{m} I_k y_k (x_k)])^2$$

- Background coefficients
- Sample displacement, sample transparency or zero-shift corrections
- Peak-shape function parameters
- Unit cell dimensions
- Preferred orientation
- Scale factors
- Positional parameters
- Atomic site occupancies
- Atomic displacement parameters

Background Functions

Polynomial function

$$b_i = \sum_{j=1}^m B_j (\frac{2\theta_i}{2\theta_0} - 1)^{j-1}$$

where $2\theta_0$ is the the origin of the background polynomial and B_j are the parameters to be refined

Chebyshev polynomial

$$b_i = \sum_{j=1}^m B_j T_{j-1}(x)$$

Cosine Fourier series

j=1

$$b_i = \sum_{j=1}^{m} B_j \cos(2(j-1)2\theta_i)$$

where

$$x = \frac{2(2\theta_i - 2\theta_{min})}{2\theta_{max} - 2\theta_{min}}$$

and $T_{j-1}(x)$ are the Chebyshev polynomials:

 $T_0(x) = 0$ $T_1(x) = x$ $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

Background function

File Dattern View Solve Define Infe	Modify Function
Intervals Background	Function type Polynomial Chebyshev Cosine Fourier series
Modify Peaks > Indexing >	20 C Automatic
10000	OK KCancel
Rietveld Refinement	
General Powder Data cime	
Background	
Function type: Chebyshev; Number of coefficients: 16	Modify
.ine-shifts	
zero-shift 0.000000	
sample displacement 0.000000	
sample transparency 0.000000	
1fo	
Refine	

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Peak shape functions

					R	etveld	Refinem	ent			-	•	×
Gener	alP	owder Data	cime										
St	ructur	Profile fur	ction	Corr	ections								
Sca	l e facto Scale	or 0.002330											
Peak F	k Shape Pearson	Functions	•										
t	o beta0	2.000000) — `) — t	v Detal	0.000000		vv beta2	0.009845					
a	asym1	0.000000) 🗆 a	asym2	0.000000		asym3	0.000000	asym4	0.000000			
Info													
	¢	<u>R</u> efine			κρ - 3		<u>Q</u> uit			🔀 <u>H</u> elp]		

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Pseudo-Voigt profile function

$$y(x) = \eta \frac{C_G^{1/2}}{\sqrt{\pi}H} e^{(-C_G x^2)} + (1 - \eta) \frac{C_L^{1/2}}{\pi H} (1 + C_L x^2)^{-1}$$

$$x = \frac{(2\theta_i - 2\theta_k)}{H_k}$$

$$C_G = 4\ln 2, C_L = 4, C_G^{1/2} / \sqrt{\pi}H \text{ with } \int_{-\infty}^{\infty} y(x)dx = 1$$

 $\eta = \eta_0 + \eta_1 2\theta + \eta_2 2\theta^2$, where $0 \le \eta \le 1$

 $H = \sqrt{Utan^2\theta + Vtan\theta} + W \qquad \text{Caglioti formula}$

 $\eta_0, \eta_1, \eta_2, U, V$ and W are refined variables

Modified Thompson-Cox-Hastings pseudo-Voigt

$$y(x) = \eta \frac{C_G^{1/2}}{\sqrt{\pi}H} e^{(-C_G x^2)} + (1-\eta) \frac{C_L^{1/2}}{\pi H} (1+C_L x^2)^{-1}$$

$$H = \sum_{i=0}^{5} a_i H_G^{5-i} H_L^i$$
$$H_G = \sqrt{Utan^2\theta + Vtan\theta + W + Z/cos^2\theta}$$

$$H_L = X/\cos\theta + Y \tan\theta$$

$$\eta = \sum_{i=1}^{3} b_i \left(\frac{H_L}{H}\right)$$

U, V, W, Z, X and Y are refined variables

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Pearson-VII profile function

$$y(x) = \frac{\Gamma(\beta)}{\Gamma(\beta - 1/2)} \frac{C_p^{1/2}}{\sqrt{\pi}H} (1 - C_p x^2)^{-\beta}$$

$$\beta = \beta_0 + \beta_1 / 2\theta + \beta_2$$

 $\begin{array}{l} \beta = 1 \ {\rm Cauchy \ function} \\ \beta = 2 \ {\rm Lorentz \ function} \\ \beta = \infty \ {\rm Gauss \ function} \end{array}$

The FWHM (H) is modeled by using the Caglioti formula as in the case of the pseudo-Voigt function

 $\beta_0, \beta_1, \beta_2, U, V, W$ are refined variables

Default choice

Peak Asymmetry

The correction for the peak asymmetry is applied by using as multiplier the semi-empirical function given in Bérar & Baldinozzi, (1993). J. Appl. Cryst. 26, 128-129

$$A_{ik} = 1 + P_1(\theta_k)F_a(z) + P_2(\theta_k)F_b(z)$$

$$P_1(\theta_k) = A_0/tan(\theta_k) + A_1/tan(2\theta_k)$$
$$P_2(\theta_k) = B_0/tan(\theta_k) + B_1/tan(2\theta_k)$$

$$F_a(z) = 2ze^{-z^2} F_b(z) = (8z^3 - 12z)e^{-z^2} z = \frac{\theta_i - \theta_k - S}{H_k}$$

 A_0, A_1, B_1 , and B_2 are refined variables

Λ

Λ

Preferred orientation

The preferred orientation P_k is calculated using the March-Dollase function (Dollase, 1986):

$$P_k = \frac{1}{N} \sum_{i=1}^{N} (G^2 \cos^2 \phi_k^i + \frac{1}{G} \sin^2 \phi_k^i)^{-3/2}$$

where Φ_k is the angle between the reciprocal lattice vector $\mathbf{d_k}^*$ corresponding to a Bragg reflection k and the reciprocal lattice vector parallel to the preferred orientation axis.

G is the refined parameter

Line-shifts corrections

$$2\theta_{obs} = 2\theta_{calc} + \Delta 2\theta$$

$$\Delta 2\theta_s = -2s\frac{\cos\theta}{R} = S\cos\theta$$

Sample displacement error in Bragg-Brentano geometry

$$\Delta 2\theta_t = \frac{1}{2\mu R} \sin 2\theta = T \sin 2\theta$$

Transparency correction in Bragg-Brentano geometry

$$\Delta 2\theta = S\cos\theta + T\sin2\theta + Z$$

The constant term Z is the zero-shift error

S, T, and Z are refined variables

Profile parameters

The Le Bail technique can be adopted to perform a full pattern decomposition prior to Rietveld refinement

	Rietveld Refinement _ C X
General Profile Crystal Structure	
Automatic Procedures	Print Options Image: Start/end cycle Image: correlation matrix Image: Standard deviation
LSQ Options Number of Cycles: 30 🗘 W Criterium of Convergence: 4 2 Refine non-structural parameters with Le Ba	/eighting Scheme: # 2 : W=1.0/Count v
lfo	
Rg	p = 8.222 Rwp = 13.351 Image: Constraint of the second s

This strategy is suggested especially if the available structure model is not completed (Rietveld refinement guidelines, L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, *J. Appl. Cryst.* **32** (1999) 36)

Refinement strategies

The refinement can be carried out by following two alternative approaches:

- The user can decide the refinement strategy via graphical interface
- An automatic refinement schedule can be applied
 - Scale
 - 20 correction
 - Background coefficients
 - W
 - U, V, other profile parameters
 - Coordinates of atoms
 - Isotropic displacements

Restraints

$$\Phi = \sum_{i=1}^{n} w_i \cdot (y_{i,obs} - y_{i,calc})^2 + w_{dist} \sum_{i=1}^{n} w_i \cdot (dist_i^{exp} - dist_i^{calc})^2 + w_{dist} \sum_{i=1}^{n} w_i \cdot (dist_i^{exp} - dist_i^{exp} - dist_i^{exp})^2 + w_{dist} \sum_{i=1}^{n} w_i \cdot (dist_i^{exp} - dist_i^{exp} - dist_i^{exp} - dist_i^{exp})^2 + w_{dist} \sum_{i=1}^{n} w_i \cdot (dist_i^{exp} - dist_i^{exp} - di$$

$$w_{ang} \sum_{i=1} w_i \cdot (a_i^{exp} - a_i^{calc})^2 + w_{plane} \sum_{i=1} w_i \cdot (p_i^{exp} - p_i^{calc})^2$$

Each type of restraints is included in the refinement as a set of observations, in addition to the main set

			Manage	e restraints						
Select Restraint Type and weight										
Distance re	straints	✓ Weight	on distances	: 10000.00	Save restra	ints Coad				
List of rest	raints					Active restraints				
C Active	Atoms	Current	Target	esd						
	C1-N1	1.355	1.321	0.030						
	C1-01	1.233	1.221	0.030						
	C1-S1	1.785	1.751	0.030						
	C2-C3	1.388	1.380	0.030						
	C2-C7	1.401	1.380	0.030						
	C2-S1	1.758	1.751	0.030						
	C3-C4	1.398	1.380	0.030		:				
	C3-N1	1.397	1.443	0.030		:				
	C4-C5	1.388	1.380	0.030						
	C4-02	1.372	1.395	0.030						
	C5-C6	1.399	1.380	0.030						
	C6-C7	1.393	1.380	0.030						
	C7-C8	1.512	1.530	0.030						
	C8-C9	1.521	1.530	0.030						
	C9-N2	1.498	1.443	0.030						

🤣 ок

Cancel

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Constraints

Constraints are mathematical relationships between parameters

October 2019) - Bari, Italy

c

Norkshop (30 September

EXPO&more Internation

Symmetry constraints are mandatory and automatically imposed by the program

- Special position

 e.g., atom on special position (¹/₂, ¹/₂, ¹/₂) should non be refined,
 atom on special position (x, x, x) in space group P23 should have equal shift on x,y,z
- Unit cell dimension

e.g., a=b=c and $\alpha = \beta = \gamma$ in cubic crystal system

Constraints

Constraints imposed by the user to reduce the number of parameters

Riding model (move H atoms synchronously with the C atoms)

Norkshop (30 September – 3 October 2019) - Bari, Italy

EXPO&more Internation

- Constraints on ADPs (ADPs are made to shift synchronously)
- Occupation factor
 e.g., A,B atoms in same site: occA + occB = 1

Statistical measures of a refinement

Unweighted profile R-factor

$$R_p = \frac{\sum_{i}^{N} |y_{i,obs} - y_{i,calc}|}{\sum_{i}^{N} y_{i,obs}} \times 100$$

Weighted profile R-factor

$$R_{wp} = \sqrt{\frac{\sum_{i}^{N} w_i \cdot (y_{i,obs} - y_{i,calc})^2}{\sum_{i}^{N} w_i \cdot (y_{i,obs})^2}} \times 100$$

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Profile residual with the background subtracted

$$R'_{p} = \frac{\sum_{i}^{N} |y_{i,obs} - y_{i,calc}| \cdot \frac{|y_{i,obs} - b_{i}|}{y_{i,obs}}}{\sum_{i}^{N} y_{i,obs} - b_{i}} \times 100$$

$$R'_{wp} = \sqrt{\frac{\sum_{i}^{N} w_{i} \cdot \left((y_{i,obs} - y_{i,calc}) \frac{(y_{i,obs} - b_{i})}{y_{i,obs}}\right)^{2}}{\sum_{i}^{N} w_{i} \cdot (y_{i,obs} - b_{i})^{2}}} \times 100$$

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Statistical measures of a refinement

Expected R value

$$R_{exp} = \sqrt{\frac{N-p}{\sum_{i}^{N} w_i \cdot (y_{i,obs})^2}} \times 100$$

Goodness-of-fit

$$\chi^2 = \frac{\sum_{i}^{N} w_i \cdot (y_{i,obs} - y_{i,calc})^2}{N - P} = \left[\frac{R_{wp}}{R_{exp}}\right]^2$$

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Other residual on F or F²:

$$R_F = \frac{\sum_{j}^{m} |F_{j,obs} - F_{j,calc}|}{\sum_{j}^{m} F_{j,obs}} \times 100 \qquad R_B = \frac{\sum_{j}^{m} |I_{j,obs} - I_{j,calc}|}{\sum_{j}^{m} I_{j,obs}} \times 100$$

Quality of refinement

Important criteria for the quality of the refinement:

the fit of the calculated pattern to the observed data and

October 2019) - Bari, Italy

က၂

EXPO&more International Workshop (30 September

the chemical sense of the structural model

Structure refinement of C₉H₁₁N₂O₂S·CI

Input file for Rietveld refinement:

%Structure ammonium
%Job ethylammonium chloride (C9H11N2O2SC1)
%Data

Pattern ammonium.xy Wavelength 1.54056 %crystal ammonium_riet.cif %rietveld

October 2019) - Bari, Italy

3

EXPO&more International Workshop (30 September

2-(4-Hydroxy-2-oxo-2,3-dihydro-1,3-benzothiazol-7-yl) ethylammonium chloride

 $\mathrm{C_9H_{11}N_2O_2S}{\cdot}\mathrm{CI}$

From graphical interface:

- File > Import Diffraction Pattern
- File > Import Structure
- Refine > Rietveld

Contact, software download and info http://www.ba.ic.cnr.it/softwareic/expo/

Acknowledgements

EXPO&more International Workshop (30 September – 3 October 2019) - Bari, Italy

Colleagues of the research team A. Altomare, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio