Nanoscale SERS investigation of a polyphenol-based plasmonic nanovector for drug delivery applications

<u>G. Nisini^{1*}</u>, F. Ripanti², C. Fasolato³, A. Scroccarello⁴, F. Della Pelle⁴, F. Cappelluti⁵, D. Compagnone⁴, A. Nucara¹, P. Postorino¹

¹Department of Physics, Sapienza University of Rome, Italy ²Department of Physics and Geology, University of Perugia, Perugia, Italy ³Institute for Complex Systems (ISC-CNR), National Research Council, Rome, Italy ⁴Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy ⁵InterCat and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark

*nisini.1630469@studenti.uniroma1.it

with cellular components, thus allowing for a deep understanding of the biological behaviour of this polyphenol. In addition, Caffeic Acid can bind several biological molecules, proving the realization of a target specific SERS based nanosensor. These nanostructures have great potentialities for therapeutic and diagnostic applications, such as early cancer detection [5].

[3] Cialla-May et al., Recent progress in surface
[3] Cialla-May et al., Recent progress in surface
[4] Cialla-May et al., Recent progress in surface
[5] Fasolato et al. Folate-based single cell
[6] Gialla-May et al., Recent progress in surface
[7] Cialla-May et al., Recent progress in surface
[8] Cialla-May et al., Recent progress in surface
[9] Cialla-May et al.,

biomedical applications: from cells to clinics. *Chem.* Soc. Rev., **46**, 2017.